|
[1] S. P. Jeng, R.H. Havemann, M. C. Chang, Process integration and manufacturability issues for high performance multilevel interconnect, Mater. Res. Soc. Symp. Proc. 337 (1994) 25-31. [2] 2013, The International Technology Roadmap for Semiconductor, ITRS. [3] H. K. Jung, H. B. Lee, M. Tsukasa, E. Jung, J. H. Yun, J. M. Lee, G. H. Choi, S. Choi, C. Chung, Formation of Highly Reliable Cu/Low-k Interconnects by Using CVD Co Barrier in Dual Damascene Structures, IEEE IRPS (2011) 3E.2.1-3E.2.5. [4] W. Z. Xu, J. X. Wang, H. S. Lu, X. Zeng, J. B. Xu, X. P. Qu, Direct Copper Electrodeposition onto Cobalt Adhesion Layer in Alkaline Bath, IEEE ICSICT (2012) 1-3. [5] Y. H. Su, J. N. Shih, Y. S. Wang, W. H. Tseng, W. H. Liao, C. Y. Hung,W. H. Lee, Y. L. Wang, CoW Alloy as Multi-function Diffusion Barrier Material for Next-generation Cu Metallization, IEEE ISNE (2015) 1-3. [6] H. Shimizu, K. Shima, Y. Suzuki, T. Momose, Y. Shimogaki, Precursor-based designs of nano-structures and their processing for Co(W) alloy films as a single layered barrier/liner layer in future Cu-interconnect, J. Mater. Chem. C 3 (2015) 2500-2510. [7] X. P. Qu , X. Wang, L. A. Cao, W. Z. Xu, Study of a single layer ultrathin CoMo film as a direct plateable adhesion/barrier layer for next generation interconnect, IEEE IITC (2014) 257-260. [8] M. Paunovic, P. J. Bailey, R. G. Schand, D. A. Smith, Electrochemically Deposited Diffusion Barriers, J. Electrochem. Soc. 141 (1994) 1843-1850. [9] S. T. Chena, Y.Y. Liua, G. S. Chen, Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process, Appl. Surf. Sci. 354 (2015) 144. [10] Y. S. Diamand, B. Israel, Y. Sverdlov, The electrical and material properties of MOS capacitors with electrolessly deposited integrated copper gate, Microelectron. Eng. 55 (2001) 313-322. [11] A. Kohn, M. Eizenberg, Y. S. Diamand, B. Israel, Y. Sverdlov, Evaluation of electroless deposited Co(W,P) thin films as diffusionbarriers for copper metallization, Microelectron. Eng. 55 (2001) 297-303. [12] T. K. Tsai, S. S. Wu, W. L. Liu, S. H. Hsieh, W. J. Chen, Electroless CoWP as a Diffusion Barrier between Electroless Copper and Silicon, J. Electron. Mater. 36 (2007) 1408-1414. [13] T. Osaka, H. Aramaki, M. Yoshino, K.Ueno, I.Matsuda, Y. S. Diamand, Fabrication of Electroless CoWP/NiB Diffusion Barrier Layer on SiO2 for ULSI Devices, J. Electrochem. Soc. 156 (2009) H707-H710. [14] T. K. Tsai, S. S. Wu, C. S. Hsu, J. S. Fang, Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films, Thin Solid Films 519 (2011) 4958-4962. [15] H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg,Y. S. Diamand, The effect of tungsten and boron on the Cu barrier and oxidation properties of thin electroless cobalt-tungsten-boron films, Microelectron. Eng. 82 (2005) 623-628. [16] H. B. Bhandari, J. Yang, H. Kim, Y. Lin, R. G. Gordon, Q. M. Wang, J. S. M. Lehn, H. Li, D. Shenai, Chemical Vapor Deposition of Cobalt Nitride and its Application as an Adhesion-Enhancing Layer for Advanced Copper Interconnects, ECS J. Solid State Sci. Technol. 1 (2012) N79-N84. [17] W. Volksen, R. D. Miller, G. Dubois, Low Dielectric Constant Materials, Chem. Rev. 110 (2010) 56-110. [18] S. Wolf, Silicon Processing for the VLSI ERA Vol.4 deep-submicron process technology, Ch: 16, L. Press (2002). [19] J. R. Lloyd, J. J. Clement, Electromigration in copper conductors”, Thin Solid Films 262 (1995) 135-141. [20] 楊正杰,張鼎張,鄭晃忠,2000,“銅金屬與低介電常數材料與製程”,,奈米通訊,7卷,4期,國家亳微米元件實驗室,11月。 [21] H. Cai, D. Tong, Y. Wang, X. Song, B. Ding, Reactive synthesis of porous Cu3Si compound, J. Alloys Compd. 509 (2011) 1672-1676. [22] H. Y. Wong, N. F. Mohd Shukor, and N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J. 38 (2007) 777-782. [23] J. D. McBrayer, R. M. Swanson, and Y. W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc. 133 (1986) 1242-1246. [24] M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films 52 (1978) 415-443. [25] C. R. M. Grovenor, Microelectronic Materials, Adam Hilger Book Company (1989) 238. [26] H. Ono, T. Nakano, T. Ohta, Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W), Appl. Phys. Lett. 64 (1994) 1511-1513. [27] T. Laurila, K. Zeng, J. K. Kivilahti, Failure mechanism of Ta diffusion barrier between Cu and Si, J. Appl. Phys. 88 (2000) 3377-3384. [28]T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, M. Murakami, Diffusion barrier property of TaN between Si and Cu, Appl. Surf. Sci. 99 (1996) 265-272. [29] C. C. Yang, S. Cohen, T. Shaw, P. C. Wang, T. Nogami, and D. Edelstein, Characterization of “Ultrathin-Cu”/Ru(Ta)/TaN Liner Stack for Copper Interconnects, IEEE Electron Device Lett. 31 (2010) 722-724. [30] B. W. Gregory, J. L. Stickney, Electrochemical atomic layer epitaxy (ECALE) , J. Electroanal. Chem. 300 (1991) 543-561. [31] M. Modibedi, Crystalline Thin Films: The Electrochemical Atomic Layer Deposition (ECALD) view, ECALD – CSIR Research Space (2011). [32] M. Innocenti, I. Bencistà, S. Bellandi, C. Bianchini, F. Di Benedettoa, A. Lavacchi, F. Vizza, M. L. Foresti, Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag(1 1 1), Electrochim. Acta 58 (2011) 599-605. [33] J. L. Stickney, C. Thambidurai, Y. G. Kim, Electrodeposition of Ru by atomic layer deposition (ALD), Electrochim. Acta 53 (2008) 6157-6164. [34] X. Liang, Q. Zhang, M. D. Lay, J. L. Stickney, Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a Bait and Switch Surface-Limited Reaction, J. Am. Chem. Soc. 133 (2011) 8199-8204. [35] C. Wang, S. Lin, X. Shi, X. Zhang, H. Kou, Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD), Appl. Surf. Sci. 256 (2010) 4365-4369. [36] R. Vaidyanathan, S. M. Cox, U. Happek, D. Banga, M. K. Mathe, J. L. Stickney, Preliminary Studies in the Electrodeposition of PbSe/PbTe Superlattice Thin Films via Electrochemical Atomic Layer Deposition (ALD), Langmuir 22 (2006) 10590-10595. [37] R. C. Alkire, D. M. Kolb, Advances in Electrochemical Science and Engineering, John Wiley & Sons Volume 7 (2001). [38] K. Juttner, W. J. Lorenz, Underpotential metal-deposition on single-crystal surfaces, Z. Phys. Chem. 122 (1980) 163-185. [39] A. T. Hubbard, J. L. Stickney, M. P. Soriaga, V. K. F. Chia, S. D. Rosasco, B. C. Schardt, T. Solomun, D. Song, J. H. White and A. Wieckowski, Electrochemical processes at well-defined surfaces, J. Electroanal. Chem. Interfacial Electrochem. 168 (1984) 43-66. [40] A. A. Gewirth, B. K. Niece, Electrochemical Applications of in Situ Scanning Probe Microscopy”, Chem. Rev. 97 (1997) 1129-1162. [41] E. J. Calvo, R.A. Etechenique, Chapter 12: Kinetic Applications of the Electrochemical Quartz Crystal Microbalance, In: Compton RG, Hancock G (eds) Comprehensive chemical kinetics 37 (1999) 461-487. [42] Z. D. Wei, L. L. Li, Y. H. Luo, C. Yan, C. X. Sun, G. Z. Yin, P. K. Shen, Electrooxidation of Methanol on upd-Ru and upd-Sn Modified Pt Electrodes, J. Phys. Chem. 110 (2006) 26055-26061. [43] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 315 (2007) 220-222. [44] F. B. Nişancı, T. Öznülüer, Ü. Demir, Photoelectrochemical properties of nanostructured ZnO prepared by controlled electrochemical underpotential deposition, Electrochim. Acta 108 (2013) 281-287. [45] G. K. Jennings, P. E. Laibinis, Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold, J. Am. Chem. Soc. 119 (1997) 5208-5214. [46] S. R. Brankovic, J. X. Wang, R. R. Adzic, New methods of controlled monolayer- to-multilayer deposition of Pt for designing electrocatalysts at an atomic level, J. Serb. Chem. Soc. 66 (2001) 887-898. [47] S. Ambrozik, B. Rawlings, N. Vasiljevic, N. Dimitrov, Metal deposition via electroless surface limited redox replacement, Electrochem. Commun. 44 (2014) 19-22. [48] D. Banga , B. Perdue , J. Stickney, Electrodeposition of a PbTe/CdTe superlattice by electrochemical atomic layer deposition (E-ALD), J. Electroanal. Chem. 716 (2014) 129-135. [49] M. K. Mathe, S. M. Cox, B. H. Flowers Jr., R. Vaidyanathan, L. Pham, N. Srisook, U. Happek, J. L. Stickney, Deposition of CdSe by EC-ALE, J. Cryst. Growth 271 (2004) 55-64. [50] F. Loglio, M. Innocenti, F. DAcapito, R. Felici, G. Pezzatini, E. Salvietti, M. L. Foresti, Cadmium selenide electrodeposited by ECALE: electrochemical characterization and preliminary results by EXAFS, J. Electroanal. Chem. 575 (2005) 161-167. [51] B. W. Gregory, D. W. Suggs, J. L. Stickney, Conditions for the Deposition of CdTe by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc. 138 (1991) 1279-1284. [52] M. D. Lay, J. L. Stickney, EC-STM Studies of Te and CdTe Atomic Layer Formation from a Basic Te Solution, J. Electrochem. Soc. 151 (2004) C431-C435. [53] V. Venkatasamy, N. Jayaraju, S. M. Cox, C. Thambidurai, M. Mathe, J. L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem. 589 (2006) 195-202. [54] L. P. Colletti, S. Thomas, E. M. Wilmer, J. L. Stickney, Thin-Layer Electrochemical Studies of ZnS, ZnSe, and ZnTe Formation by Electrochemical Atomic Layer Epitaxy (ECALE), MRS Proceedings 451 (1996) 235-244. [55] I. Villegas, J. L. Stickney, Preliminary Studies of GaAs Deposition on Au(100), (110), and (111) Surfaces by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc. 139 (1992) 686-694. [56] T. L. Wade, L. C. Ward, C. B. Maddox, U. Happek, J. L. Stickney, Electrodeposition of InAs, Electrochem. Solid State Lett. 2 (1999) 616-618. [57] S. Lin, X. Shi, X. Zhang, H. Kou, C. Wang, Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD), Appl. Surf. Sci. 256 (2010) 4365-4369. [58] D. Banga, N. Jarayaju, L. Sheridan, Y. G. Kim, B. Perdue, X. Zhang, Q. Zhang, J. Stickney, Electrodeposition of CuInSe2 (CIS) via Electrochemical Atomic Layer Deposition (E-ALD), Langmuir 28 (2012) 3024-3031. [59] J. M. Czerniawski, B. R. Perdue, J. L. Stickney, Potential Pulse Atomic Layer Deposition of Cu2Se, Chem. Mater. 28 (2016) 583-591. [60] D. K. Gebregziabiher, Y. G. Kim, C. Thambidurai, V. Ivanova, P. H. Haumesser, J. L. Stickney, Electrochemical atomic layer deposition of copper nanofilms on ruthenium, J. Cryst. Growth 312 (2010) 1271-1276. [61] N. Jayaraju, D. Vairavapandian, Y. G. Kim, D. Banga, J. L. Stickney, Electrochemical Atomic Layer Deposition (E-ALD) of Pt Nanofilms Using SLRR Cycles, J. Electrochem. Soc.159 (2012) D616-D622. [62] L. B. Sheridan, J. Czerwiniski, N. Jayaraju, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, M. P. Soriaga, Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR), with EDTA Complexation, Electrocatalysis 3 (2012) 96-107. [63] N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y. G. Kim, J. L. Stickney, PtRu Nanofilm Formation by Electrochemical Atomic Layer Deposition (E-ALD), Langmuir 30 (2014) 3254-3263. [64] J.S. Fang, Y.S. Liu, T.S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films 580 (2015) 1-5. [65] J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci. 364 (2016) 358-364. [66] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons, Inc. (2001). [67] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes [68] D. A. Jones, Principles And Prevention of Corrosion, Prentice Hall, 2nd ed. (1997). [69] M. Azam, 2012, The Electrochemistry of Ag in Deep Eutectic Solvents, Doctoral dissertation, University of Leicester. [70] B. Scharifker and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta 28 (1983) 879-889. [71] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation: Part I. General considerations, J. Electroanal. Chem. 138 (1982) 225-239. [72] B. J. Hwang, R. Santhanam, Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta 46 (2001) 2843-2853. [73] G.M. Brisard, E. Zenati, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Underpotential Deposition of Lead on Copper(111): A Study Using a Single-Crystal Rotating Ring Disk Electrode and ex Situ Low-Energy Electron Diffraction and Scanning tunneling Microscopy, Langmuir 11 (1995) 2221-2230. [74] Y. Z. Hamada, R. Cox, H. Hamada, Cu2+-Citrate Dimer Complexes in Aqueous Solutions, J. Basic Appl. Sci. 11 (2015) 583-589. [75] R. Vasilic, N. Vasiljevic, N. Dimitrov, Open circuit stability of underpotentially deposited Pb monolayer on Cu(111), J. Electroanal. Chem. 580 (2005) 203-212. [76] C. Thambidurai, Y. G. Kim, N. Jayaraju, V. Venkatasamy, J. L. Stickney, Copper Nanofilm Formation by Electrochemical ALD, J. Electrochem. Soc. 156 (2009) D261-D268. [77] C. Thambidurai, D. K. Gebregziabiher, X. Liang, Q. Zhang, V. Ivanova, P. H. Haumesser, J. L. Stickney, E-ALD of Cu Nanofilms on Ru/Ta Wafers Using Surface Limited Redox Replacement, J. Electrochem. Soc. 157 (2010) D466-D471. [78] Y. G. Kim , J. Y. Kim , C. Thambidurai , .J. L. Stickney, Pb Deposition on I-Coated Au(111). UHV-EC and EC-STM Studies, Langmuir 23 (2007) 2539-2545. [79] Y. G. Kim , J. Y. Kim , D. Vairavapandian , J. L. Stickney, Platinum Nanofilm Formation by EC-ALE via Redox Replacement of UPD Copper: Studies Using in-Situ Scanning Tunneling Microscopy, J. Phys. Chem. 110 (2006) 17998-18006. [80] J. Y. Kim, Y. G. Kim, J. L. Stickney, Cu nanofilm formation by electrochemical atomic layer deposition (ALD) in the presence of chloride ions, J. Electroanal. Chem. 621 (2008) 205-213. [81] T. P. Moffat, Oxidative Chloride Adsorption and Lead Upd on Cu(100): Investigations intoSurfactant-Assisted Epitaxial Growth, J. Phys. Chem. B 102 (1998) 10020-10026. [82] G.M. Brisard, E. Zenati, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Underpotential Deposition of Lead on Cu(100) in the Presence of Chloride: Ex-Situ Low-Energy Electron Diffraction, Auger Electron Spectroscopy, and Electrochemical Studies, Langmuir 13 (1997) 2390-2397. [83] W. Z. Xu, J. B. Xu, H. S. Lu, J. X. Wang, Z. J. Hu, X. P. Qu, Direct Copper Plating on Ultra-Thin Sputtered Cobalt Film in an Alkaline Bath, J. Electrochem. Soc. 160 (2013) D3075-D3080. [84] V. Brusic, G. S. Frankel, A. G. Schrott, T. A. Petersen and B. M. Rush, Corrosion Inhibition of Cobalt with a Thin Film of Cu-BTA, J. Electrochem. Soc. 140 (1993) 2507-2511. [85] B. C. Peethala, H. P. Amanapu, U. R. K. Lagudu, and S. V. Babu, Cobalt Polishing with Reduced Galvanic Corrosion at Copper/Cobalt Interface Using Hydrogen Peroxide as an Oxidizer in Colloidal Silica-Based Slurries, J. Electrochem. Soc. 159 (2012) H582-H588. [86] P. Vanysek, Electrochemical series., CRC handbook of chemistry and physics, 92 (2012). [87] S. Aksu and F. M. Doyle, Electrochemistry of Copper in Aqueous Ethylenediamine Solutions, J. Electrochem. Soc. 149 (2002) B340-B347. [88] S. Aksu, L. Wang, and F. M. Doyle, Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine, J. Electrochem. Soc. 150 (2003) G718-G723. [89] L. B. Sheridan, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, Formation of Palladium Nanofilms Using Electrochemical Atomic Layer Deposition (E-ALD) with Chloride Complexation, Langmuir 29 (2013) 1592-1600. [90] M. R. Oliver, Chemical-mechanical planarization of semiconductor materials (Vol. 69), Springer, Berlin Heidelberg (2013).
|