跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林隆奕
研究生(外文):Long-Yi Lin
論文名稱:添加劑對鈷基薄膜上以電化學原子層沉積銅薄膜之研究
論文名稱(外文):Additives Affecting the Growth of Cu Thin Film Prepared on Cobalt-Based Substrates by Electrochemical Atomic Layer Deposition
指導教授:方昭訓
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:172
中文關鍵詞:電化學原子層沉積銅金屬化製程鈷基板乙二胺
外文關鍵詞:Electrochemical atomic layer deposition (EC-ALD)copper metallizationcobalt substrateethylenediamine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部份探討添加劑對於電化學原子層沉積(EC-ALD)在濺鍍鈷薄膜的二氧化矽基板上沉積銅薄膜之影響。首先以欠電位沉積一層鉛原子層做為犧牲層,再藉由加入不同添加劑之銅溶液與犧牲層原子進行表面侷限氧化還原反應置換出銅原子層,並且比較不同添加劑對於置換銅薄膜的影響。實驗結果藉由四點探針分析電性、X光繞射儀進行相結構分析、掃描式電子顯微鏡及原子力顯微鏡分析薄膜表面形貌,以及電化學分析儀分析添加劑對鈷薄膜腐蝕影響。
結果顯示添加檸檬酸鈉製備出的銅薄膜含鉛量過高,源自於檸檬酸鈉降低了銅的置換效率使得犧牲層鉛原子殘留。而添加過氯酸鈉製備出的銅薄膜結晶性與電性良好,卻由於溶液中Cu2+離子含量過高對鈷薄膜有伽凡尼腐蝕影響,造成沉積的銅薄膜附著性不佳容易剝落。在添加乙二胺製備出的銅薄膜置換效率佳,且能降低Cu2+對鈷薄膜之腐蝕影響薄膜穩定性最佳。
第二部分則是以添加乙二胺之銅溶液藉由EC-ALD在無電鍍CoP、CoWP基板上沉積銅薄膜並探討薄膜熱穩定性。結果顯示添加乙二胺之銅溶液能成功以EC-ALD在無電鍍鈷合金基板上沉積銅薄膜,經快速退火熱處理CoP基板上之銅薄膜熱穩定性可至550oC,CoWP基板上之銅薄膜熱穩定性至500 oC。


The effect of the additives on electrochemical-atomic-layer-deposited copper film on Co/SiO2/Si substrate was investigated. An underpotentially -deposited (UPD) Pb atomic layer was used as a sacrificial layer. The following Cu film was prepared using surface limiting redox reaction in copper solution with different additives. Additives significantly affect the replacement of UPD – Pb by Cu. The resistance of the film was measured by four points probe. Crystal structure was analyzed by x-ray diffraction. The surface morphology was analyzed by scanning electron microscope and atomic force microscope. Corrosive effect of the additives on cobalt film was analyzed by electrochemical analyzer.
The results showed that lead residual exist in Cu film when adding sodium citrate because sodium citrate reduces the efficiency of copper displacement. On the other hand, sodium perchlorate increases crystallinity and electrical properties of the Cu film. However, the high content of Cu2+ ions in solution enhances the galvanic corrosive on the cobalt film, resulting in the poor adhesion of copper film. Ethylenediamine increases the replacement efficiency of copper film and reduces the corrosion of cobalt film. Thus, the Cu film can be stabilized.
In the second part of the study, we investigated the thermal stability of the added ethylenediamine in copper solution to prepare copper film on CoP and CoWP substrates using EC-ALD. The results showed that the copper film can be successfully deposited on the electroless cobalt-based substrate by EC-ALD. The Cu on CoP substrate is thermally stable up to 550oC, and Cu on CoWP substrate is thermally stable at 500oC.


中文摘要....................................i
Abstract....................................iii
誌謝....................................v
目錄....................................vi
表目錄....................................ix
圖目錄....................................x
第一章 緒論....................................1
1.1 前言....................................1
1.2 研究動機....................................2
第二章 理論基礎及文獻回顧....................................5
2.1 銅製程....................................5
2.2 擴散阻障層....................................6
2.2.1 擴散阻障層之需求....................................6
2.2.2 擴散阻障層之種類....................................6
2.3 鈷基薄膜應用文獻探討....................................10
2.4 電化學原子層沉積技術 (Electrochemical Atomic Layer Deposition, EC-ALD) ....................................11
2.4.1 電化學原子層沉積概念....................................11
2.4.2 電化學原子層沉積(EC-ALD)優點....................................11
2.4.3 欠電位沉積 (Underpotential deposition, UPD) ....................................12
2.4.4 表面侷限氧化還原反應 (Surface limited redox replacement, SLRR) ............13
2.4.5 EC-ALD研究現況....................................15
2.5 電化學分析法原理....................................16
2.5.1 線性掃描伏安法 (Linear Sweep Voltammetry, LSV) ....................................16
2.5.2 循環伏安法 (Cyclic Voltammetry, CV) ....................................18
2.5.3 計時電流法 (Chrono Amperometry, CA) ....................................18
2.6 電化學成核原理....................................19
2.6.1 電化學反應過程....................................19
2.6.2 瞬時、漸進成核模式....................................20
第三章 實驗流程與儀器介紹....................................32
3.1 實驗設備....................................32
3.1.1 磁控濺鍍系統....................................32
3.1.2 電化學原子層沉積系統....................................32
3.1.3 快速退火爐....................................33
3.2 實驗材料....................................33
3.2.1 實驗基板....................................33
3.2.2 濺鍍靶材....................................33
3.2.3 製程氣體....................................33
3.2.4 化學藥品....................................34
3.3 實驗流程....................................35
3.3.1 Si基板清洗與熱氧化處理....................................36
3.3.2 濺鍍(sputter) Co thin film....................................36
3.3.3 電化學原子層沉積(EC-ALD)系統沉積銅薄膜....................................37
3.3.3.1 電化學溶液配製....................................37
3.4 分析儀器及原理....................................40
3.4.1 電化學分析儀....................................40
3.4.2 四點探針 (Four-Point Probe, FPP) ....................................40
3.4.3 X光繞射分析儀 (X-Ray Diffraction, XRD) ....................................41
3.4.4 掃描電子顯微鏡 (Scanning Electron Microscope, SEM) .................................42
3.4.5 歐傑電子能譜儀 (Auger Electron Spectrometer, AES) ....................................42
3.4.6 原子力顯微鏡 (Atomic Force Microscope, AFM) ....................................43
第四章 實驗結果與討論....................................50
4.1 銅溶液添加檸檬酸鈉對銅薄膜沉積之影響....................................50
4.1.1 鍍液循環伏安 (CV) 曲線探討....................................50
4.1.2 實驗流程....................................51
4.1.3 相結構分析....................................52
4.1.4 薄膜電性分析....................................53
4.1.5 表面形貌分析....................................54
4.1.6 I-V-T曲線分析....................................54
4.1.7 添加檸檬酸鈉製備銅薄膜上欠電位鉛之成核曲線....................................56
4.2 銅溶液添加過氯酸鈉對銅薄膜沉積之影響....................................58
4.2.1 實驗流程....................................58
4.2.2 相結構分析....................................58
4.2.3 薄膜電性分析....................................59
4.2.4 表面形貌分析....................................60
4.2.5 I-V-T曲線分析....................................60
4.2.6 添加過氯酸鈉製備銅薄膜上欠電位鉛之成核曲線....................................61
4.3 銅溶液添加乙二胺對銅薄膜沉積之影響....................................63
4.3.1 添加乙二胺之銅溶液對於鈷基板之腐蝕影響....................................64
4.3.2 乙二胺濃度對置換銅薄膜之沉積測試....................................65
4.3.3 實驗流程....................................66
4.3.4 結構分析....................................67
4.3.5 電性分析....................................68
4.3.6 表面形貌分析....................................69
4.3.7 I-V-T曲線分析....................................69
4.3.8 添加乙二胺製備銅薄膜上欠電位鉛之成核曲線....................................70
4.3.9 熱穩定性分析....................................71
4.4 三種添加劑特性比較....................................74
4.4.1 不同添加劑製備薄膜銅電性比較....................................74
4.4.2 不同添加劑製備銅薄膜XRD....................................74
4.4.3 不同添加劑製備銅薄膜SEM....................................75
4.4.4 不同添加劑製備銅薄膜AFM....................................75
4.4.5 不同添加劑對銅置換曲線....................................76
4.4.6 不同添加劑製備銅薄膜上欠電位鉛之成核曲線....................................76
4.4.7 不同添加劑之銅溶液對於鈷基板之腐蝕影響....................................77
4.5 在無電鍍鈷基薄膜上以EC-ALD沉積銅薄膜之熱穩定性探討.........................78
4.5.1 實驗流程....................................78
4.5.2 相結構分析....................................79
4.5.3 薄膜電性分析....................................80
4.5.4 薄膜表面形貌分析....................................81
4.5.5 薄膜之縱深元素分析....................................82
4.5.6 無電鍍鈷基板上之鉛成核模式....................................83
4.5.7 銅溶液對無電鍍鈷基薄膜基板之腐蝕影響....................................85
第五章 結論....................................155
參考文獻....................................156
Extended Abstract....................................167
簡歷....................................172



[1] S. P. Jeng, R.H. Havemann, M. C. Chang, Process integration and manufacturability issues for high performance multilevel interconnect, Mater. Res. Soc. Symp. Proc. 337 (1994) 25-31.
[2] 2013, The International Technology Roadmap for Semiconductor, ITRS.
[3] H. K. Jung, H. B. Lee, M. Tsukasa, E. Jung, J. H. Yun, J. M. Lee, G. H. Choi, S. Choi, C. Chung, Formation of Highly Reliable Cu/Low-k Interconnects by Using CVD Co Barrier in Dual Damascene Structures, IEEE IRPS (2011) 3E.2.1-3E.2.5.
[4] W. Z. Xu, J. X. Wang, H. S. Lu, X. Zeng, J. B. Xu, X. P. Qu, Direct Copper Electrodeposition onto Cobalt Adhesion Layer in Alkaline Bath, IEEE ICSICT (2012) 1-3.
[5] Y. H. Su, J. N. Shih, Y. S. Wang, W. H. Tseng, W. H. Liao, C. Y. Hung,W. H. Lee, Y. L. Wang, CoW Alloy as Multi-function Diffusion Barrier Material for Next-generation Cu Metallization, IEEE ISNE (2015) 1-3.
[6] H. Shimizu, K. Shima, Y. Suzuki, T. Momose, Y. Shimogaki, Precursor-based designs of nano-structures and their processing for Co(W) alloy films as a single layered barrier/liner layer in future Cu-interconnect, J. Mater. Chem. C 3 (2015) 2500-2510.
[7] X. P. Qu , X. Wang, L. A. Cao, W. Z. Xu, Study of a single layer ultrathin CoMo film as a direct plateable adhesion/barrier layer for next generation interconnect, IEEE IITC (2014) 257-260.
[8] M. Paunovic, P. J. Bailey, R. G. Schand, D. A. Smith, Electrochemically Deposited Diffusion Barriers, J. Electrochem. Soc. 141 (1994) 1843-1850.
[9] S. T. Chena, Y.Y. Liua, G. S. Chen, Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process, Appl. Surf. Sci. 354 (2015) 144.
[10] Y. S. Diamand, B. Israel, Y. Sverdlov, The electrical and material properties of MOS capacitors with electrolessly deposited integrated copper gate, Microelectron. Eng. 55 (2001) 313-322.
[11] A. Kohn, M. Eizenberg, Y. S. Diamand, B. Israel, Y. Sverdlov, Evaluation of electroless deposited Co(W,P) thin films as diffusionbarriers for copper metallization, Microelectron. Eng. 55 (2001) 297-303.
[12] T. K. Tsai, S. S. Wu, W. L. Liu, S. H. Hsieh, W. J. Chen, Electroless CoWP as a Diffusion Barrier between Electroless Copper and Silicon, J. Electron. Mater. 36 (2007) 1408-1414.
[13] T. Osaka, H. Aramaki, M. Yoshino, K.Ueno, I.Matsuda, Y. S. Diamand, Fabrication of Electroless CoWP/NiB Diffusion Barrier Layer on SiO2 for ULSI Devices, J. Electrochem. Soc. 156 (2009) H707-H710.
[14] T. K. Tsai, S. S. Wu, C. S. Hsu, J. S. Fang, Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films, Thin Solid Films 519 (2011) 4958-4962.
[15] H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg,Y. S. Diamand, The effect of tungsten and boron on the Cu barrier and oxidation properties of thin electroless cobalt-tungsten-boron films, Microelectron. Eng. 82 (2005) 623-628.
[16] H. B. Bhandari, J. Yang, H. Kim, Y. Lin, R. G. Gordon, Q. M. Wang, J. S. M. Lehn, H. Li, D. Shenai, Chemical Vapor Deposition of Cobalt Nitride and its Application as an Adhesion-Enhancing Layer for Advanced Copper Interconnects, ECS J. Solid State Sci. Technol. 1 (2012) N79-N84.
[17] W. Volksen, R. D. Miller, G. Dubois, Low Dielectric Constant Materials, Chem. Rev. 110 (2010) 56-110.
[18] S. Wolf, Silicon Processing for the VLSI ERA Vol.4 deep-submicron process technology, Ch: 16, L. Press (2002).
[19] J. R. Lloyd, J. J. Clement, Electromigration in copper conductors”, Thin Solid Films 262 (1995) 135-141.
[20] 楊正杰,張鼎張,鄭晃忠,2000,“銅金屬與低介電常數材料與製程”,,奈米通訊,7卷,4期,國家亳微米元件實驗室,11月。
[21] H. Cai, D. Tong, Y. Wang, X. Song, B. Ding, Reactive synthesis of porous Cu3Si compound, J. Alloys Compd. 509 (2011) 1672-1676.
[22] H. Y. Wong, N. F. Mohd Shukor, and N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J. 38 (2007) 777-782.
[23] J. D. McBrayer, R. M. Swanson, and Y. W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc. 133 (1986) 1242-1246.
[24] M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films 52 (1978) 415-443.
[25] C. R. M. Grovenor, Microelectronic Materials, Adam Hilger Book Company (1989) 238.
[26] H. Ono, T. Nakano, T. Ohta, Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W), Appl. Phys. Lett. 64 (1994) 1511-1513.
[27] T. Laurila, K. Zeng, J. K. Kivilahti, Failure mechanism of Ta diffusion barrier between Cu and Si, J. Appl. Phys. 88 (2000) 3377-3384.
[28]T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, M. Murakami, Diffusion barrier property of TaN between Si and Cu, Appl. Surf. Sci. 99 (1996) 265-272.
[29] C. C. Yang, S. Cohen, T. Shaw, P. C. Wang, T. Nogami, and D. Edelstein, Characterization of “Ultrathin-Cu”/Ru(Ta)/TaN Liner Stack for Copper Interconnects, IEEE Electron Device Lett. 31 (2010) 722-724.
[30] B. W. Gregory, J. L. Stickney, Electrochemical atomic layer epitaxy (ECALE) , J. Electroanal. Chem. 300 (1991) 543-561.
[31] M. Modibedi, Crystalline Thin Films: The Electrochemical Atomic Layer Deposition (ECALD) view, ECALD – CSIR Research Space (2011).
[32] M. Innocenti, I. Bencistà, S. Bellandi, C. Bianchini, F. Di Benedettoa, A. Lavacchi, F. Vizza, M. L. Foresti, Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag(1 1 1), Electrochim. Acta 58 (2011) 599-605.
[33] J. L. Stickney, C. Thambidurai, Y. G. Kim, Electrodeposition of Ru by atomic layer deposition (ALD), Electrochim. Acta 53 (2008) 6157-6164.
[34] X. Liang, Q. Zhang, M. D. Lay, J. L. Stickney, Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a Bait and Switch Surface-Limited Reaction, J. Am. Chem. Soc. 133 (2011) 8199-8204.
[35] C. Wang, S. Lin, X. Shi, X. Zhang, H. Kou, Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD), Appl. Surf. Sci. 256 (2010) 4365-4369.
[36] R. Vaidyanathan, S. M. Cox, U. Happek, D. Banga, M. K. Mathe, J. L. Stickney, Preliminary Studies in the Electrodeposition of PbSe/PbTe Superlattice Thin Films via Electrochemical Atomic Layer Deposition (ALD), Langmuir 22 (2006) 10590-10595.
[37] R. C. Alkire, D. M. Kolb, Advances in Electrochemical Science and Engineering, John Wiley & Sons Volume 7 (2001).
[38] K. Juttner, W. J. Lorenz, Underpotential metal-deposition on single-crystal surfaces, Z. Phys. Chem. 122 (1980) 163-185.
[39] A. T. Hubbard, J. L. Stickney, M. P. Soriaga, V. K. F. Chia, S. D. Rosasco, B. C. Schardt, T. Solomun, D. Song, J. H. White and A. Wieckowski, Electrochemical processes at well-defined surfaces, J. Electroanal. Chem. Interfacial Electrochem. 168 (1984) 43-66.
[40] A. A. Gewirth, B. K. Niece, Electrochemical Applications of in Situ Scanning Probe Microscopy”, Chem. Rev. 97 (1997) 1129-1162.
[41] E. J. Calvo, R.A. Etechenique, Chapter 12: Kinetic Applications of the Electrochemical Quartz Crystal Microbalance, In: Compton RG, Hancock G (eds) Comprehensive chemical kinetics 37 (1999) 461-487.
[42] Z. D. Wei, L. L. Li, Y. H. Luo, C. Yan, C. X. Sun, G. Z. Yin, P. K. Shen, Electrooxidation of Methanol on upd-Ru and upd-Sn Modified Pt Electrodes, J. Phys. Chem. 110 (2006) 26055-26061.
[43] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 315 (2007) 220-222.
[44] F. B. Nişancı, T. Öznülüer, Ü. Demir, Photoelectrochemical properties of nanostructured ZnO prepared by controlled electrochemical underpotential deposition, Electrochim. Acta 108 (2013) 281-287.
[45] G. K. Jennings, P. E. Laibinis, Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold, J. Am. Chem. Soc. 119 (1997) 5208-5214.
[46] S. R. Brankovic, J. X. Wang, R. R. Adzic, New methods of controlled monolayer- to-multilayer deposition of Pt for designing electrocatalysts at an atomic level, J. Serb. Chem. Soc. 66 (2001) 887-898.
[47] S. Ambrozik, B. Rawlings, N. Vasiljevic, N. Dimitrov, Metal deposition via electroless surface limited redox replacement, Electrochem. Commun. 44 (2014) 19-22.
[48] D. Banga , B. Perdue , J. Stickney, Electrodeposition of a PbTe/CdTe superlattice by electrochemical atomic layer deposition (E-ALD), J. Electroanal. Chem. 716 (2014) 129-135.
[49] M. K. Mathe, S. M. Cox, B. H. Flowers Jr., R. Vaidyanathan, L. Pham, N. Srisook, U. Happek, J. L. Stickney, Deposition of CdSe by EC-ALE, J. Cryst. Growth 271 (2004) 55-64.
[50] F. Loglio, M. Innocenti, F. DAcapito, R. Felici, G. Pezzatini, E. Salvietti, M. L. Foresti, Cadmium selenide electrodeposited by ECALE: electrochemical characterization and preliminary results by EXAFS, J. Electroanal. Chem. 575 (2005) 161-167.
[51] B. W. Gregory, D. W. Suggs, J. L. Stickney, Conditions for the Deposition of CdTe by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc. 138 (1991) 1279-1284.
[52] M. D. Lay, J. L. Stickney, EC-STM Studies of Te and CdTe Atomic Layer Formation from a Basic Te Solution, J. Electrochem. Soc. 151 (2004) C431-C435.
[53] V. Venkatasamy, N. Jayaraju, S. M. Cox, C. Thambidurai, M. Mathe, J. L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem. 589 (2006) 195-202.
[54] L. P. Colletti, S. Thomas, E. M. Wilmer, J. L. Stickney, Thin-Layer Electrochemical Studies of ZnS, ZnSe, and ZnTe Formation by Electrochemical Atomic Layer Epitaxy (ECALE), MRS Proceedings 451 (1996) 235-244.
[55] I. Villegas, J. L. Stickney, Preliminary Studies of GaAs Deposition on Au(100), (110), and (111) Surfaces by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc. 139 (1992) 686-694.
[56] T. L. Wade, L. C. Ward, C. B. Maddox, U. Happek, J. L. Stickney, Electrodeposition of InAs, Electrochem. Solid State Lett. 2 (1999) 616-618.
[57] S. Lin, X. Shi, X. Zhang, H. Kou, C. Wang, Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD), Appl. Surf. Sci. 256 (2010) 4365-4369.
[58] D. Banga, N. Jarayaju, L. Sheridan, Y. G. Kim, B. Perdue, X. Zhang, Q. Zhang, J. Stickney, Electrodeposition of CuInSe2 (CIS) via Electrochemical Atomic Layer Deposition (E-ALD), Langmuir 28 (2012) 3024-3031.
[59] J. M. Czerniawski, B. R. Perdue, J. L. Stickney, Potential Pulse Atomic Layer Deposition of Cu2Se, Chem. Mater. 28 (2016) 583-591.
[60] D. K. Gebregziabiher, Y. G. Kim, C. Thambidurai, V. Ivanova, P. H. Haumesser, J. L. Stickney, Electrochemical atomic layer deposition of copper nanofilms on ruthenium, J. Cryst. Growth 312 (2010) 1271-1276.
[61] N. Jayaraju, D. Vairavapandian, Y. G. Kim, D. Banga, J. L. Stickney, Electrochemical Atomic Layer Deposition (E-ALD) of Pt Nanofilms Using SLRR Cycles, J. Electrochem. Soc.159 (2012) D616-D622.
[62] L. B. Sheridan, J. Czerwiniski, N. Jayaraju, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, M. P. Soriaga, Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR), with EDTA Complexation, Electrocatalysis 3 (2012) 96-107.
[63] N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y. G. Kim, J. L. Stickney, PtRu Nanofilm Formation by Electrochemical Atomic Layer Deposition (E-ALD), Langmuir 30 (2014) 3254-3263.
[64] J.S. Fang, Y.S. Liu, T.S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films 580 (2015) 1-5.
[65] J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci. 364 (2016) 358-364.
[66] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons, Inc. (2001).
[67] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes
[68] D. A. Jones, Principles And Prevention of Corrosion, Prentice Hall, 2nd ed. (1997).
[69] M. Azam, 2012, The Electrochemistry of Ag in Deep Eutectic Solvents, Doctoral dissertation, University of Leicester.
[70] B. Scharifker and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta 28 (1983) 879-889.
[71] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation: Part I. General considerations, J. Electroanal. Chem. 138 (1982) 225-239.
[72] B. J. Hwang, R. Santhanam, Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta 46 (2001) 2843-2853.
[73] G.M. Brisard, E. Zenati, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Underpotential Deposition of Lead on Copper(111): A Study Using a Single-Crystal Rotating Ring Disk Electrode and ex Situ Low-Energy Electron Diffraction and Scanning tunneling Microscopy, Langmuir 11 (1995) 2221-2230.
[74] Y. Z. Hamada, R. Cox, H. Hamada, Cu2+-Citrate Dimer Complexes in Aqueous Solutions, J. Basic Appl. Sci. 11 (2015) 583-589.
[75] R. Vasilic, N. Vasiljevic, N. Dimitrov, Open circuit stability of underpotentially deposited Pb monolayer on Cu(111), J. Electroanal. Chem. 580 (2005) 203-212.
[76] C. Thambidurai, Y. G. Kim, N. Jayaraju, V. Venkatasamy, J. L. Stickney, Copper Nanofilm Formation by Electrochemical ALD, J. Electrochem. Soc. 156 (2009) D261-D268.
[77] C. Thambidurai, D. K. Gebregziabiher, X. Liang, Q. Zhang, V. Ivanova, P. H. Haumesser, J. L. Stickney, E-ALD of Cu Nanofilms on Ru/Ta Wafers Using Surface Limited Redox Replacement, J. Electrochem. Soc. 157 (2010) D466-D471.
[78] Y. G. Kim , J. Y. Kim , C. Thambidurai , .J. L. Stickney, Pb Deposition on I-Coated Au(111). UHV-EC and EC-STM Studies, Langmuir 23 (2007) 2539-2545.
[79] Y. G. Kim , J. Y. Kim , D. Vairavapandian , J. L. Stickney, Platinum Nanofilm Formation by EC-ALE via Redox Replacement of UPD Copper: Studies Using in-Situ Scanning Tunneling Microscopy, J. Phys. Chem. 110 (2006) 17998-18006.
[80] J. Y. Kim, Y. G. Kim, J. L. Stickney, Cu nanofilm formation by electrochemical atomic layer deposition (ALD) in the presence of chloride ions, J. Electroanal. Chem. 621 (2008) 205-213.
[81] T. P. Moffat, Oxidative Chloride Adsorption and Lead Upd on Cu(100): Investigations intoSurfactant-Assisted Epitaxial Growth, J. Phys. Chem. B 102 (1998) 10020-10026.
[82] G.M. Brisard, E. Zenati, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Underpotential Deposition of Lead on Cu(100) in the Presence of Chloride: Ex-Situ Low-Energy Electron Diffraction, Auger Electron Spectroscopy, and Electrochemical Studies, Langmuir 13 (1997) 2390-2397.
[83] W. Z. Xu, J. B. Xu, H. S. Lu, J. X. Wang, Z. J. Hu, X. P. Qu, Direct Copper Plating on Ultra-Thin Sputtered Cobalt Film in an Alkaline Bath, J. Electrochem. Soc. 160 (2013) D3075-D3080.
[84] V. Brusic, G. S. Frankel, A. G. Schrott, T. A. Petersen and B. M. Rush, Corrosion Inhibition of Cobalt with a Thin Film of Cu-BTA, J. Electrochem. Soc. 140 (1993) 2507-2511.
[85] B. C. Peethala, H. P. Amanapu, U. R. K. Lagudu, and S. V. Babu, Cobalt Polishing with Reduced Galvanic Corrosion at Copper/Cobalt Interface Using Hydrogen Peroxide as an Oxidizer in Colloidal Silica-Based Slurries, J. Electrochem. Soc. 159 (2012) H582-H588.
[86] P. Vanysek, Electrochemical series., CRC handbook of chemistry and physics, 92 (2012).
[87] S. Aksu and F. M. Doyle, Electrochemistry of Copper in Aqueous Ethylenediamine Solutions, J. Electrochem. Soc. 149 (2002) B340-B347.
[88] S. Aksu, L. Wang, and F. M. Doyle, Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine, J. Electrochem. Soc. 150 (2003) G718-G723.
[89] L. B. Sheridan, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, Formation of Palladium Nanofilms Using Electrochemical Atomic Layer Deposition (E-ALD) with Chloride Complexation, Langmuir 29 (2013) 1592-1600.
[90] M. R. Oliver, Chemical-mechanical planarization of semiconductor materials (Vol. 69), Springer, Berlin Heidelberg (2013).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top