跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲銘
研究生(外文):Che-Ming Cheng
論文名稱:錫酸鋅之發光及光降解特性研究
論文名稱(外文):Studies on the Luminescence and Photodegradation Properties of Zinc Stannate
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:114
中文關鍵詞:溶膠 –凝膠法錫酸鋅螢光體活化劑
外文關鍵詞:Sol–gel methodZn2SnO4PhosphorActivator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以溶膠–凝膠法製備錫酸鋅(Zn2SnO4)螢光粉體,並探討不同熱處理溫度、電解質及摻雜劑對結構、微結構、光催化反應及發光特性之影響。
經熱處理400-600℃可形成ZnO/SnO2複合相結構,且在不同鋅錫比成分比例及熱處理溫度會影響光催化性能,添加適當電解質可改善粉末的光催化特性及對偶氮染料AO7之降解效率。
未摻雜之粉末經煆燒700 oC後均開始形成Zn2SnO4結構,於1200 oC熱處理後為Zn2SnO4結晶相並伴隨著微量的SnO2偏析相, 經波長327 nm 激發時,主要放射峰為548 nm。添加摻雜劑會影響粉末之粒徑、比表面積及發光特性。其中摻鈦之粉末可增加本質的發光效率;摻雜銪之粉末經波長327 nm 激發後,於590 nm 處有尖銳的放射峰。不同的熱處理條件會影響發光強度。


Zn2SnO4 powders were synthesized by the sol–gel method in this study. The effects of hydrolysis, electrolyte and activators on the structure, microstructure, photodegradation and luminescence were investigated.
ZnO/SnO2 composite phase structures were formed after heating at 400 -600oC. It was observed that different Zn/Sn ratios and heat-treatment condition could improve the degradation efficiency of azo dyes AO7.
The powder dried began to form Zn2SnO4 structure after annealing at 700oC. Zn2SnO4 phase can be obtained by annealing at 1200 oC, but with a small amount of residual SnO2 phases. Under 327 nm excitation, the undoped powder had emission peak at around 548 nm. The doping activators affect the particle size, morphology and specific surface area of powders. From above result that could showed that Ti doped powder could increase luminance efficience. The Eu-doped Zn2SnO4 power had emission peak was observed at 590 nm, under 327 nm excitation. The luminescence intensity of the phosphors was dependent on the heat treatment condition.


中文摘要 ...i
英文摘要...ii
誌謝...iii
目錄...iv
表目錄...viii
圖目錄...x

第一章 緒論...1
1.1 前言...1
1.2研究動機...2
第二章 理論基礎與文獻回顧...3
2.1氧化鋅錫與錫酸鋅...3
2.1.1晶體結構...3
2.1.2特性與應用...3
2.1.2.1錫酸鋅的發光特性...4
2.1.2.2錫酸鋅的光觸媒特性...4
2.2.3 AO7染料特性...4
2.2.4 Langmuir-Hinshelwood動力學方程式[26]...4
2.2.5影響光觸媒催化效率之因素...5
2.3螢光材料與特性...13
2.3.1螢光材料的組成...13
2.3.2發光機制...15
2.3.2.1 本質發光...15
2.3.2.2外質型發光(extrinsic luminescence)...15
2.3.3 影響發光效率因素...15
2.3.3.1主體晶格效應...15
2.3.3.2材料缺陷效應...16
2.3.3.3濃度淬滅效應...16
2.3.3.4 熱消淬現象...17
2.3.4 CIE色度座標...17
2.4 無機螢光粉體之製備方法...19
2.5 溶膠-凝膠法...19
2.5.1 溶膠-凝膠法基本原理...19
2.5.1.2 水解...19
2.5.1.3 縮聚合...20
2.5.2 影響溶膠-凝膠法製程之因素...20
第三章 實驗方法與步驟...22
3.1實驗過程...22
3.2特性分析與儀器原理簡介...24
3.2.1 熱重分析/熱差掃描量熱分析 (TGA/DSC)...24
3.2.2 X光繞射分析 (X-ray diffraction, XRD)...24
3.2.3霍氏轉換紅外線光譜儀 (Fourier transform infrared spectra, FT-IR)...24
3.2.4 拉曼光譜儀(Raman)...25
3.2.5場發射掃描式電子顯微鏡 (FE-SEM)...25
3.2.5 透射電子顯微鏡(TEM)...25
3.2.6 恆溫吸附儀 (BET)...26
3.2.7 電子順磁共振光譜 (EPR)...26
3.2.8 X光光電子能譜 (XPS)...27
3.2.9 光催化反應...27
3.2.10 紫外光/可見光譜儀 (UV-Vis)...27
3.2.11螢光光譜儀 (Fluorescence spectrophotometer)...28
第四章 結果與討論...35
4.1 溶膠–凝膠反應...35
4.2 XRD繞射與結晶性分析...39
4.3 TGA/DSC分析...51
4.4 FT-IR分析...55
4.5 Raman光譜...60
4.6 FE-SEM分析...64
4.7 BET分析...68
4.8 EPR分析...72
4.9 UV-Vis分析...75
4.10光降解...80
4.11 PL分析...88
4.12 衰減時間量測及色度座標分析...97
第五章 結論...102
參考文獻...103
Extended Abstract...110
個人簡歷...115


[1]A. Fujishima, K. Honda, 1972, “Electrochemical photolysis of water at a semiconductor electrode”, Nature ,238, pp.37–38.
[2]M. B. Ali, H. H. Yolcu, H. Elhouichet, 2016 , “Hydrothermal synthesis of ZTO /graphene nanocomposite with excellent photocatalytic activity under visible light irradiation”, Journal of Colloid and Interface Science ,473, pp.66–74.
[3]M. B. Ali, F. B. Bouaifel, H. Elhouichet, 2015, “Hydrothermal synthesis, phase structure, optical and photocatalytic properties of Zn2SnO4 nanoparticles” , Journal of Colloid and Interface Science ,457, pp.360–369.
[4]T. Tangcharoen, C. Kongmark, W. Pecharapa, 2015, “Synchrotron X-ray absorption spectroscopy study of the local atomic structures and cation ordering in perovskite- and spinel-type zinc stannate synthesized by co-precipitation method”, Journal of Molecular Structure, 1102, pp.95-100.
[5]S. Wang, Z. Yang, M. Lu, 2007 , “Coprecipitation synthesis of hollow Zn2SnO4 spheres”, Mater. Lett, 61, pp.3005-3008.
[6]S. H. Park, S. Y. Kima, S. B. Choi, 2015 , “Photoluminescence properties of polymethyl methacrylate-coated Zn2SnO4 nanowires”, Thin Solid Films, 591, pp.336–340.
[7]C. G. Kim, N. H. Lee, Y. K. Kwon , 2013 , “ Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors”, Thin Solid Films, 544, pp.129–133.
[8]G. S. Devi, H. Z. Hamoon , “Zn2SnO4 : A Suitable Material for Liquid Petroleum Gas(LPG) Detection.
[9]W. W. Wang, Y. J. Zhu, L. X. Yang, 2007 , “ZnO–SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties”, Adv. Funct. Mater, 17, pp.59–64.
[10]Z. Wen, G. Wang, W. Lu, 2007 , “Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping”, Chyst. Growth & Design, 7, pp.1722–1725.
[11]V. G. Pol, J. M. C. Moreno, M. M. Thackeray, 2012 , “Autogenic synthesis of SnO2 materials and their structural, electrochemical, and opticalproperties”, Journal of Solid State Chemistry, 196, pp.21–28.
[12]C. Y. Lan, J. F. Gong, Y. W. Jiang, 2013 , “Synthesis and photoluminescence properties of string-like ZnO/SnO2 Nanowire / nanosheet nano-heterostructures”, Journal of Alloys and Compounds, 575, pp.24–28.
[13]D. L. Young, H. Moutinho, Y. Yan, 2002 ,“Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films”,Journal of Applied Physics, 92, pp. 310.
[14]C. Pang, B. Yan, L. Liao, 2010 ,“Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires,” Nanotechnology, 21, pp. 465-706.
[15]X. Fu, X. Wang, J. Long, 2009, “Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4”, J. Solid State Chem, 182, pp.517-2524.
[16]R. D. Shannon, 1976, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides” Acta Cryst. A32, pp. 751-767.
[17]H. Nakahata, A. Hachigo, S. Fujii, 2002.“Equivalent circuit parameters of surface-acoustic-wave interdigital transducers for ZnO/diamond and SiO2/ZnO/diamond structures”. Jpn. J. Appl. Phys.
[18]M. H. Huang, S. Mao, H. Feick, 2001 ,“Room-temperature ultraviolet nanowire nanolasers. Science, 292, pp.1897-1899.
[19]B. Yu, C. S. Zhu, F. X. Gan, 1997,“Exciton spectre of SnO2 nanocrystals with surficial dipole layer. Optical Materials, 7, pp.15-20.
[20]X. L. Fu, X. X. Wang. J. L. Long, 2009 ,“Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4”, Journal of Solid State Chemistry, 182, pp.517–524.
[21]X. L. Fu, X. X. Wang. J. L. Long, 2009 ,“Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4”, Journal of Solid State Chemistry, 182, pp.517–524.
[22]潘軍,奚寶娟,周紅洋,2010, “奈米片組裝的Zn2SnO4空心八面體分級結構的製備與發光性能”,中國科學技術大學化學與材料科學學院, 26卷, pp.939-945。
[23]Q. Q. Zhao, X. L. Deng, M.Ding, 2016,“Synthesis of hollow cubic Zn2SnO4 sub-microstructures with enhanced photocatalytic performance”, Journal of Alloys and Compounds, 671, pp.328-333
[24]T. K. Jia, F. Fu, F. Long, 2016 ,“Synthesis, Characterization and Enhanced Visiblelight Photocatalytic Activity of Zn2SnO4/C Nanocomposites with Truncated Octahedron Morphology”, J. ceramint, 05, 199.
[25]20 A.Kumar,A.IC Jain, 2001 ,“Photophysics and photochemistry of colloidal CdS—Ti02 coupled semiconductors—photocatalytic oxidation of indole”J. Molecular Catal, 65, pp.265-273.
[26]M. Muruganandham, M. Swaminathan, 2006 , “Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process”, Dyes Pigments, 68, pp.133–142.
[27]廖秋榮,2008,“可視光光觸媒在環境保護之應用技術”,台灣土壤及地下水環境保護協會,27, pp.13–21。
[28]H. Cao, Y. G. Zhao, H. C. Ong, 1998 , “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films ”, Appl. Phys. Lett, 73, pp.3656–3660.
[29]S. D. Pau, C. F. Overman, L. E. Hehre, 1986, “Modeling chemical reactivity Regioselectivity of Diels-Alder cycloadditions of electron-rich dienes with electron-deficient dienophiles” , Journal of the American Chemical Society, 108, pp.7381-7396.
[30]V. Palmisano, L. Schiavello, M. Sclafani, 1991 , “Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion”, Applied Catalysis, 69, pp.323-340.
[31]Turchi, C.S. and Ollis, D.F., “Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack.” Journal of Catalysis 122:178-192 (1990)
[32]A. A. Firooz, A. R. Mahjoub, A. A. Khodadadi, 2010, “High photocatalytic activity of Zn2SnO4 among various nanostructures of Zn2xSn1−xO2 prepared by a hydrothermal method”, Chem. Eng. J, 165, pp.735-739.
[33]A. Annamalai, D. Carvalho, K. C. Wilson, 2010 , “Properties of hydrothermally synthesized Zn2SnO4 anoparticles using Na2CO3 as a novel mineralizer”, Mater. Charact. 61, pp.873-881.
[34]曾搖毅,邴一飛,劉搖暢,2012,“Zn2SnO4立方體的水熱合成及其螢光性質”Chin. J. Lumin, 33, pp.716-719。
[35]M. Parthibavarman, K. Vallalperuman, C. Sekar, 2012 , “Microwave synthesis, characterization and humidity sensing properties of single crystalline Zn2SnO4 nanorods” Vacuum, 86, pp.1488-1493.
[36]H. Yang, S. Nie, 2008 , “Freeze-drying synthesis and optical properties of nanocrystalline ZnO/SnO2 composites”J. Optoelectron. Adv. M, 10, pp.197-200.
[37]L. Zuo. Fu, H. K. Yang, B. K. Moon, 2009 ,“Hydrothermal synthesis and optical characteristics of Eu3+ in Zn2SnO4 nanocrystals”, Current Applied Physics, 9, pp.1360–1364.
[38]Q. M. Wang, J. S. Huo, Y. H. Zheng, 2013,“Design of red/green emissive lanthanide activated nano-materials by supersonic and microwave co-irradiations”, Optical Materials, 35, pp.1146–1150.
[39]M. B Ali, H. H. Yolcu, H. Elhouichet, 2016, Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation”, Journal of Colloid and Interface Science, 473, pp.66–74.
[40]Q. Q. Zhao, D. X. Ju, X. F. Song, 2016,“Polyhedral Zn2SnO4: Synthesis, enhanced gas sensing andphotocatalytic performance”, Sensors and Actuators B, 229, pp.627–634.
[41]H. Lia, Z. Jin, H. G. Sun, 2014,“Facile fabrication of p-BiOI/n-Zn2SnO4 heterostructures with highly enhanced visible light photocatalytic performances”,Materials Research Bulletin, 55, pp.196–204.
[42]Q. Q. Zhao, X. L. Deng, M.Ding, 2016,“Synthesis of hollow cubic Zn2SnO4 sub-microstructures with enhanced photocatalytic performance”, Journal of Alloys and Compounds, 671, pp.328-333
[43]Z. Yang, L. Lv, Y. Dai, 2010 , “Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties”, Appl. Surf. Sci, 256, pp.2898-2902.
[44]M. Zhang, T. An, X. Hu, 2004 , “Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide” , Appl. Catal. A: Gen, 260, pp. 215-222.
[45]J. H. Sun, S. Y. Dong, J. L. Feng, X. J. Yin, X. C. Zhao, “Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation”, J. Mol. Catal. A-Chem., 335, 2011, pp.145–150.
[46]Z. Zhang, C. Shao, X. Li, 2010, “Electrospun Nanofibers of ZnO/SnO2 Heterojunction with High Photocatalytic Activity”, J. Phys. Chem. C, 114, pp.7920-7925.
[47]C. Wanga, B. Xua, X. Wang, 2005, “Preparation and photocatalytic activity of ZnO-TiO2-SnO2 mixture”, J. Solid State Chem, 178, pp.3500-3506.
[48]C. Wu, L. Shen, H. Yu, 2011, “Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties” Mater. Res. Bull.
[49]J. Sun, S. Dong, J. Feng, 2011, “Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation”, J. Mol. CatalA- Chem, 335, pp.145-150.
[50]景明化工股份有限公司,物質安全資料表,序號:547-58-0.
[51]L. Duan, B. Z. Sun, M. Y. Wei, 2015,“Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation”,Journal of Hazardous Materials, 285, pp.356–365.
[52]A. Hamrounia, N. Moussaa, F. Parrino, 2014,“Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites”, Journal of Molecular Catalysis A: Chemical , 390 pp.133–141.
[53]高逢時,2003年,“黑夜的精靈-螢光體”,科學發展367期, 7月,pp. 64-69。
[54]柯韋志,陳奕光,粘群,“化學與光電”
[55]G. Blasse, B. C. Grabmaier, 1994 ,“Luminescence Materials” Springer-Verlag:New York.
[56]H. M. Lee, R. L. Wang, 2007,“Structure and Photoluminescence of YAG:Tb Phospho”, Cimme Annual Convention.
[57]A. Kitai, 2008, “Luminescent Materials and Applications”, Wiley, pp.30.
[58]V. Georgieva, M. Saraiva, N. Jehanathan, 2009, “Sputter-Deposited Mg–Al–O thin films: linking molecular dynamics simulations to experiments”, J. Phys. D, 42, pp.65-107.
[59]Y. K. Kim, M. J. Lee, H. S. Yang, 2016,“Optical characteristics of the rare-earth-ions-doped calcium chlorapatite phosphors prepared by using the solid–statereaction method”, Current Applied Physics, 16, pp.357-360.
[60]J. S. Liao, D. Zhou, X. Qiu, 2013,“Charge compensation on the luminescence properties of ZnWO4:Tb3+ phosphors via hydrothermal synthesis”, Optik - International Journal for Light and Electron Optics, 124, pp.5057-5060.
[61]R. A. Mereu, A. Le Donne, S. Trabattoni, 2015, “Comparative study on structural, morphological and optical propertiesof Zn2SnO4 thin films prepared by r.f. sputtering using Zn and Sn metal targets and ZnO–SnO2 ceramic target”, Journal of Alloys and Compounds, 626, pp.112–117.
[62]A. Annamalai, D. Carvalho, K .C. Wilson, 2010,“Properties of hydrothermally synthesized Zn2SnO4 nanoparticles using Na2CO3 as a novel mineralizer”,materials characterization, 61, pp.873-818.
[63]M. Parthibavarman, K. Vallalperuman, 2012 ,“Microwave synthesis, characterization and humidity sensing properties of single crystalline Zn2SnO4 nanorods”, Vacuum, 86, pp.1488-1493.
[64]Q. R. Hu, P. Jiang, H. Xu, 2009 ,“Synthesis and photoluminescence of Zn2SnO4 nanowires”, Journal of Alloys and Compounds, 484, pp.25–27.
[65]A. Boukerika, L. Guerbous, M. Belamri, 2016, “Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphorssynthesized by sol–gel method”, Journal for Light and Electron Optics, 127, pp.5235-5239.
[66]H. Kim, Y. H. Chang, S. W. Jeon, 2016 ,“Improved performance by plasma-treated silicate phosphor particles with a sol–gel derived protective coating of indium oxide”, Optical Materials, 53, pp.48-53.
[67]D. W. Johnson, E. M. Rabinovich, 1983, “Preparation of High-Silica Glasses from Colloidal Gels: II, Sintering”, J. Am. Ceram. Soc, 66, pp.688 – 693.
[68]D. Carta, M. F. Casula, A. Corrias, 2009 , “Structural and Magnetic Characterization of Co and Ni Silicate Hydroxides in Bulk and in Nanostructures within Silica Aerogels,”Chem. Mater. pp.945.
[69]C. Thongchanthep, S. Thountom, 2015, “The synthesis of Ba0.7Sr0.3TiO3 ceramics prepared by sol–gel combustion method with urea as fuel”, Ceramics International, 41, pp95–99.
[70]O. Sha, S. L. Wanga, Z. Qiao, 2012, “Synthesis of spinel LiNi0.5Mn1.5O4 cathode material with excellent cycle stability using urea-based sol–gel method”, Materials Letters, 89 , pp.251–253
[71]M. A. Wolfovich, H. Rotter, M.V. Landau, 2003 , “Texture and nanostructure of chromia aerogels prepared by urea-assisted homogeneous precipitation and low-temperature supercritical drying” , 318 , pp.95.
[72]Y. Hu, H. Zhang, H. Yang, 2008, “Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix”, J. Alloy. Compd, 453, pp.292–297.
[73]D. Mishra, V. K. Sinha, 2010, “Eco-economical polyurethane wood adhesives from cellulosic waste: Synthesis, characterization and adhesion study”, Int. J. Adhes. Adhes, 30, pp.47–54.
[74]P. S. Patila, R. K. Kawara, T. Seth, 2003, “Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2) thin films”, Ceram. Int, 29, pp.725–734.
[75]M. J. Paterson, 1996, “Energy dependent structure changes in ion beam deposited a C-H”, Diam. Relat. Mater, 5, pp.1407–1413.
[76]A. R. Babar, S. B. Kumbhar, S. S. Shinde, 2011,“structural compositional and electrical properties of co-precipitated zinc stannate”, Journal of Alloys and Compounds, 509, pp.7508–7514.
[77]C. G. Anchieta, D. Sallet, E. L. Foleho,2014, “Synthesis of ternary zinc spinel oxides and their application in the photo degradation of organic pollutant”, Ceram. Int, 40, pp.4173–4178.
[78]L. C. Nehrua, C. Sanjeeviraja, 2013, “Controllable growth of Zn2SnO4 nanostructures by urea assisted microwave-assisted solution combustion process”, Journal of Ceramic Processing Research, 14, pp.606~609.
[79]Z. Jie , J. G. Zhao, S. Gao, L. H. Huo, 2004, “ Study on IR Spectrum of nanosized Stannic oxide Powder”, Chinese. Journal of light scattering, 14.
[80]B. Benrabah, A. Bouaza, A. Kadari, 2011, “Impedance studies of Sb doped SnO2 thin film prepared by sol gel process”, Super lattice. Microst, 50, pp.591-600.
[81]C. G.Anchietaa, D. Salleta, E. Foletto, 2014 ,“ Synthesis of ternary zinc spinel oxides and their application in the photo degradation of organic pollutant”, Ceramics International, 40, pp.173–178.
[82]S. I. Ahmad, I. A. Syed, 2014, “Quantitation of urea in urine by Fourier transforms infrared spectroscopy”, Der Pharma Chemica, 6 , pp.90-96.
[83]Y. S. Wu, I. A. Syed, 2009 “Characteristics of Zn2SnO4 (ZTO) Nanoparticles Synthesized via Hydrothermal Method”, Journal of China University of Science and Technology, 41.
[84]S. K. Misra, S. I. Andronenko, D. Tipikin, 2016 ,“Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR”, Journal of Magnetism and Magnetic Materials, 401, pp. 495–505.
[85]D. K. Patel, A. Sengupta, B. Vishwanadh, 2012, “ Local Environments Around Eu3+ and Eu2+ Ions in Dual Light-Emitting BaSnO3:Eu Nanomaterials”, R. J. Inorg. Chem, pp.1609–1619
[86]J. Raj, 2013, “Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties”, Journal of Alloys and Compounds, 577, pp.131–137.
[87]M. Vrankic, B. Grzˇeta, V. Mandic, Journal of Alloys and Compounds, 543, pp. 213–220.
[88]A.A. Mario, Y.Y. Wu, 2009, “Photoelectrochemical Study of the Band Structure of Zn2SnO4 Prepared by the Hydrothermal Method,” J. Am. Chem. Soc, 131, pp. 3217.
[89]L. E. Bausa, I. Vergara, J. Garcia-Sole, 1990, “Laser-excited luminescence in Ti-doped MgAl2O4 spinel”, J. Appl. Phys, 68, pp.736.
[90]P. K. Baitha, J. Manam, 2015, “Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+”, Journal of Rare Earths, 33, pp. 805.
[91]M. Zhang, T. An, X. Hu, C. Wang, 2004, “Preparation and photocatalytic properties of ananometer ZnO–SnO2 coupled oxide”, Appl. Catal. A-Gen., 260, pp.215–222.
[92]Z.. Yi, B. Y. Fei, L. Chang, W. T. Zheng, 2012,“ Hydrothermal Synthesis and PL Properties of Zn2SnO4 Nanocubes”, Chinese Journal of Lumminscence., 33.
[93]L. X. Cai, H. Q. Dong, H. Li, 2004,“Low-temperature growth and optical properties of radial ZnO nanowires” , Materials Letters, 58, pp.3976– 3979.
[94]N. AinSamat, R. MdNor, 2013,“Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts” , Ceramics International , 39, pp.545–548.
[95]L. S. Wang, X. Z. Zhang, X. Liao, 2005 ,“A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties,” Nanotechnology, 16 , pp.2928–2931
[96]N. L. Tarwal, P. R. Jadhav, S. A. Vanalakar, 2011, “Photoluminescence of zinc oxide nanopowder synthesized by a combustion method,” Powder Technology, 208, pp.185–188.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊