跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚智凱
研究生(外文):Chih-Kai Yao
論文名稱:摩擦攪拌改質對不同Zn/Al比之鎂合金微觀組織與拉伸機械性質之效應研究
論文名稱(外文):The Effect of Friction Stir Processing on Microstructure Characterization and Tensile Properties for Different Zn/Al Ratio Magnesium Alloys
指導教授:楊崇煒
指導教授(外文):Chung-Wei Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:鎂合金摩擦攪拌製程拉伸機械性質晶粒細化織構時效
外文關鍵詞:magnesium alloysfriction stir process (FSP)tensile mechanical propertiesgrain refiningtextureaging
相關次數:
  • 被引用被引用:1
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討摩擦攪拌製程(FSP)改質效應對不同鋅鋁比之商用AZ91D及高鋅含量ZA113鎂合金微觀組織、織構、硬度、拉伸性質及破裂特徵的變化。實驗結果顯示AZ91D經FSP改質後有效促進晶粒細化,塊狀γ相亦顯著細化且均勻分散於晶界上,並發現有固溶現象發生,使得SZ區硬度值得到提升,拉伸性質方面由於γ相的分散強化及晶粒細化使得降伏強度與抗拉強度得到明顯提升,且破裂形式由穿晶斷裂改變為沿晶斷裂。AZ91D經FSP改質後再於200ºC經24小時之人工時效可達到最佳析出強化效果,其硬度值及抗拉強度皆顯著獲得提升。ZA113經FSP改質後的塊狀之τ相被均勻分散,SZ區具有顯著晶粒細化效應並發現微細晶粒及緻密之組織,由於晶粒細化及分散之化合物導致SZ區硬度值得到提升,此外FSP過程之摩擦熱及塑性流導致相組成改變並出現準晶Q相。拉伸性質方面破裂形式由塊狀之穿晶斷裂改變為第二相圍繞在晶界上之沿晶斷裂,但由於塑性流不均勻造成之孔洞使得抗拉強度略為下降。

The aim of present study is to investigate the effect of friction stir processing (FSP) on the variation of microstructural feature, texture, hardness, tensile properties and fracture behaviors of commercial AZ91D and ZA113 magnesium alloys with different Zn/Al ratio. Experimental results show that significant grain refinement of AZ91D can be achieved by the FSP modification. Coarse γ-phase particles are refined and uniformly dispersed on the grain boundaries. The increasing microhardness within the stir zone (SZ) is resulted from the solid solution effect during FSP. The improvement of yield strength and tensile strength can be resulted from the grain refining and the dispersion strengthening effects. The microhardness and tensile strength of AZ91-FSP specimens are both significantly enhanced after heating at 200ºC, held for 24 h artificial aging treatment. The τ-phase in ZA113 magnesium alloy is also uniformly dispersed and refined after FSP modification. The microhardness is increased because of the grain refining and particle dispersion effects within the SZ. After the FSP modification process, the quasi-crystal Q-phase is observed in the SZ of ZA113-FSP specimens. The tensile strength is slightly decrease due to the pores occurred from plastic instability in the SZ. The fracture surface shows an intergranular fracture feature for the ZA113-FSP specimens.

目錄
中文摘要 …………………………………………………………... i
英文摘要
誌謝 ……………………………………………………….....
…………………………………………………………... ii
iii
目錄 ………………………………………………………....... iv
表目錄 …………………………………………………………... vi
圖目錄 …………………………………………………………... vii
第一章 前言……………………………………………...…….... 1
第二章 文獻回顧……………………………...………………… 2
2-1 鎂合金添加元素之效應………………………………... 2
2-2 摩擦攪拌製程(Friction Stir Processing, FSP)………….. 3
2-3 準晶之結晶特徵……………………………………….. 4
2-4 鎂合金變形之機制………………….............................. 4
2-5 鎂合金發展現況………………………………………... 5
第三章 實驗內容與方法………………………………………... 14
3-1 實驗材料及成分分析…………………………………... 14
3-2 摩擦攪拌製程(Friction Stir Processing, FSP)………….. 14
3-3 微觀組織解析…………………………………………... 14
3-3-1 金相組織觀察…………………………………………... 14
3-3-2 SEM組織觀察及EDS成分分析.................................... 15
3-3-3 微電子探測儀定性分析(EPMA) ……............................ 15
3-3-4 TEM微觀組織分析……………………………………. 15
3-4 相組成與織構分析………………………..……………. 15
3-4-1 XRD相組成分析…..…………………………................ 15
3-4-2 DSC熱分析……………………………………………... 15
3-4-3 EBSD織構分析…………………………………………. 16
3-4-4 Pole figure織構分析……………………………………. 16
3-5 機械性質測試…………………………………………... 16
3-5-1 硬度分佈量測…………………………………………... 16
3-5-2 拉伸試驗………………………………………………... 16
3-5-3 拉伸破斷面觀察與分析………………………………... 16
第四章 實驗結果與討論..………………………………………. 22
4-1 AZ91D合金之摩擦攪拌改質效應……………………... 22
4-1-1 金相組織觀察…………………...……………………… 22
4-1-2 SEM微觀組織觀察及EDS元素分析………………….. 22
4-1-3 EPMA定性分析………………………………………... 23
4-1-4 XRD相組成及織構分析……..………………………… 23
4-1-5 微小硬度及人工時效硬度測試………………………... 24
4-1-6 拉伸機械性質分析……………………………………... 24
4-1-7 拉伸破斷面與次表面觀察……………………………... 24
4-2 ZA113合金之摩擦攪拌改質效應……………………... 26
4-2-1 DSC分析………………………………………….......... 26
4-2-2 金相組織觀察…………………………………………... 26
4-2-3 SEM微觀組織觀察及EDS元素分析……………….... 26
4-2-4 TEM微觀組織分析……..……………………………… 27
4-2-5 EPMA定性分析………………………………………… 27
4-2-6 XRD相組成分析……………………………………….. 28
4-2-7 EBSD與Pole figure織構分析………………………….. 28
4-2-8 微小硬度測試…………………………………………... 28
4-2-9 拉伸性質分析…………………………………………... 28
4-2-10 拉伸破斷面、次表面觀察……………………………... 29
4-3 摩擦攪拌改質效應對AZ91D及ZA113之影響……….. 29
第五章 結論..……………………………………………………. 64
參考文獻 …………………………………………………………... 65
英文論文大綱 …………………………………………………………... 68
簡歷 …………………………………………………………... 72



[1]賴耿陽,“非鐵合金鑄物” ,復漢出版社,1977年,p.204.
[2]M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, The International Journal of Advanced Manufacturing Technology, 39 (2008) 851-865.
[3]J. Zhang, Z. X. Guo, F. Pan, Z. Li, X. Luo, “Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys”, Materials Science and Engineering A, 456 (2007) 43-51.
[4]A. H. Feng, Z. Y. Ma, “Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing”, Scripta Materialia, 56 (2007) 397-400.
[5]B. R. Sunil, G. P. K. Reddy, H. Pattle, R. Dumpala, “ Magnesium based surface metal matrix composites by friction stir processing”, Journal of Magnesium and Alloys, 4 (2016) 52-61.
[6]J. A. del Valle, P. Rey, D. Gesto, D. Verdera, J. A. Jmeriez, O. A. Ruano, “Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing”, Materials Science & Engineering A, 628 (2015) 198-206.
[7]N. Saikrishna, G. P. K. Reddy, B. Muirathinam, B. R. Sunil, “Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy”, Journal of Magnesium and Alloys, 4 (2016) 68-76.
[8]M. M. Avedesian, H. baker, “Magnesium and Magnesium Alloys”, ASM Specialty Handbook, (1999) 13-43.
[9]C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A, 325 (2002) 344-355.
[10]F. Zarandi, G. Seale, R. Verma, E. Essadiqi, S. Yue, “Effect of Al and Mn additions on rolling and deformation behavior of AZ series magnesium alloys”, Materials Science and Engineering A, 496 (2008) 159-168.
[11]黎文獻,“鎂與鎂合金”,中南大學出版社,2005年,p.82-83.
[12]Z. Zhang, A. Couture, A. Luo, “An investigation of the properties of Mg-Zn-Al alloys”, Scripta Materialia, 39 (1998) 45-53.
[13]J. Yang, J. Peng, “Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy”, Applied Surface Science, 369 (2016) 92-100.
[14]X. Zhang, Y. N. Zhang, D. Kevorkov, M. Medraj, “Experimental investigation of the Mg-Zn-Zr ternary system at 450°C”, Journal of Alloys and Compounds, 680 (2016) 212-225.
[15]G. H. Park, J. T. Kim, H. J. Park, Y. S. Kim, H. J. Jeong, N. Lee, Y. Seo, J. Y. Suh, H. T. Son, W. M. Wang, J. M. Park, K. B. Kim, “Development of lightweight Mg-Li-Al alloys with high specific strength”, Journal of Alloys and Compounds, 680 (2016) 116-120.
[16]Y. Zhang, L. Yang, J. Dai, J. Ge, G. Guo, Z. Liu, “Effect of Ca and Sr on the compressive creep behavior of Mg–4Al–RE based magnesium alloys”, Materials & Design , 63 (2014) 439-445.
[17]陳永牲,“焊接學”,文經圖書出版社,1991年,p.26-30.
[18]J. Chen, J. Han, L. Peng, “Influence of processing parameters on thermal field in Mg–Nd–Zn–Zr alloy during friction stir processing”, Materials & Design, 94 (2016) 186-194.
[19]Y. Xu, L. X. Hu, Y. Sun, “Dynamic recrystallization kinetics of as-cast AZ91D alloy”, Transactions of Nonferrous Metals Society of China, 24 (2014) 1683-1689.
[20]A. Mohan, W. Yuan, R. S. Misha, “ High strain rate superplasticity in friction stir processed ultrafine grained Mg-Al-Zn alloys”, Materials Science and Engineering A, 562 (2013) 69-76.
[21]Z. Y. Ma, A. L. Pilchak, M. C. Juhas, J. C. Williams, “Microstructural refinement and property enhancement of cast light alloys via friction stir processing”, Scripta Materialia, 58 (2008) 361-366.
[22]R. S. Mishra, Z. Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering R, 50 (2005) 1-78.
[23]K. N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering A, 327 (2002) 246-251.
[24]J. Yang, D. Wang, B. L. Xiao, D. R. Ni, Z. Y. Ma, “Effects of rotation rates on microstructure, mechancial properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy” , Metallurgical and Materials Transactions: A , 44 (2013) 517-530.
[25]S. C. Park, Y. S. Sato, H, Kokawa, “Basal plane texture and flow pattern in friction stir weld of a magnesium alloy”, Metallurgical and Materials Transactions A , 34 (2003) 987-994.
[26]S. H. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, P. Wanjara, “Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties” Metallurgical and Materials Transactions A, 44 (2013) 323-336.
[27]R. Lifshitz, “Quasicrystals: A matter of definition, Foundations of Physics”, 33 (2003)
[28]D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry”, Physical Review Letters, 53 (1984)
[29]A.Mackay, “Physica A: Statistical Mechanics and its Applications”, 114 (1982) 609-613.
[30]周公度,郭可信,“晶體與準晶體之衍射”,北京大學出版社,1999年,p.202-257.
[31]E. Hellner, W. B. Pearson, “Coordination formulation of tetrahedrally close packed structures: An addendum to the observations of Yarmolyuk and Kripyakevich”, Journal of Solid State Chemistry, 70 (1987) 241-248.
[32]賴耿陽,“非鐵金屬材料”,復漢出版社,2000年,p.174.
[33]李勝隆,“熱處理-金屬材料原理與應用”,全華出版社,2014年,p.60-62.
[34]呂璞石,黃振賢,“金屬材料”,文京出版社,1986年,p.62.
[35]葉哲政,“2006非鐵金屬年鑑”,金屬工業研究發展中心,2006年,p.3-5.
[36]J. M. Song, T. X. Wen, J. Y. Wang, “Vibration fracture properties of a lightweight Mg–Li–Zn alloy”, Scripta Materialia, 56 (2007) 529-532.
[37]J. V. Rau, I. Antonoac, M. Fosca, A. D. Bonis, A. I. Blajan, C. Cotrut, V. Graziani, M. Curcio, A. Cricenti, M. Niculesscu, M. Ortenzi, R. Teghi, “Glass-ceramic coated Mg-Ca alloys for biomedical implant applications” Materials Science and Engineering C, 64 (2016) 362-369.
[38]Y. J. Chen, Q. D. Wang, J. B. Lin, M. P. Liu, Jarle Hjelen, H. J. Roven, “Grain refinement of magnesium alloys processed by severe plastic deformation”, Transactions of Nonferrous Metals Society of China, 24 (2014) 3747-3754.
[39]M. thirumurugan, S. kumaran, “Extrusion and precipitation hardening behavior of AZ91 magnesium alloy”, Transactions of Nonferrous Metals Society of China, 23 (2013) 1595-1601.
[40]Y. L. Xu, Kui Zhang, X. G. Li, Kian Lei, H. B. Yuan, Zheng Liu, “Effect of on-line solution and off-ine heat treatment on microstructure and hardness of die-cast AZ91D alloy” Transactions of Nonferrous Metals Society of China, 22 (2012) 2652-2658.
[41]B. A. Esgandari, H. Mehrjoo, B. Nami, S. M. Miresmaeili, “The effect of Ca and RE elements on the precipitation kinetics of Mg17Al12 phase during artificial aging of magnesium alloy AZ91”, Materials Science and Engineering: A, 528 (2011) 5018-5024.
[42]Z. Zhang, R. Tremblay, D. Dube, “Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys” Materials Science and Engineering A , 385 (2004) 286-291.
[43]X. F. Wan, H. J. Ni, M. Y. Huang, H. L. Zhang, J. H. Sun, “Microstructure, mechanical properties and creep resistance of Mg–(8%–12%)Zn–(2%–6%)Al alloys”, Transactions of Nonferrous Metals Society of China, 23 (2013) 896-903.
[44]M. B. Yang, F. S. Pan, Liang Cheng, “Effects of minor Sr, Sn and Sc addition on as-cast microstructure and mechanical properties of ZA84 magnesium alloy” Transactions of Nonferrous Metals Society of China, 20 (2010) 306-310.
[45]M. Vogel, O. Kraft, E. Arzt, “Creep behavior of magnesium die-cast alloy ZA85” , Scripta Materialia, 48 (2003) 985-990.
[46]Z. Z. Shi, W. Z. Zhang, “A transmission electron microscopy investigation of crystallography of τ-Mg32(Al, Zn)49 precipitates in a Mg–Zn–Al alloy”, Scripta Materialia, 64 (2011) 201-204.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊