跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜克忠
研究生(外文):Do Khac Trung
論文名稱:最適外幣投資組合建構與風險值衡量:台灣外匯市場的實證
論文名稱(外文):Optimal Multi-Currency Portfolio Construction and Evaluation by VaR Approach in the Taiwan Foreign Exchange Market
指導教授:湯美玲湯美玲引用關係
指導教授(外文):Mei-Ling Tang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:51
中文關鍵詞:風險值歷史模擬法變異數-共變異數法蒙地卡羅模擬法匯率風險外幣投資組合
外文關鍵詞:Value at RiskHistorical SimulationVariance-Covariance approachMonte Carlo Simulationexchange riskmulti-currency portfolio
相關次數:
  • 被引用被引用:2
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要為針對外幣資產,建構最適外幣投資組合並驗證該投資組合的匯率風險。為了達到這個目標,本研究採用了三個方法包括:歷史模擬法(Historical Simulation Approach)、變異數-共變異數法 (Variance-Covariance Approach) 以及蒙地卡羅法 (Monte Carlo Simulation Approach) 來計算外幣投資組合的風險值(VaR),並進而產生了九種建構外幣投資組合的策略。採用從2009年到2015年的台灣外匯市場日資料,並比較此九種外幣投資組合的投資組合風險值的估計結果顯示,以歷史模擬法中的 Exponentially-Weighted Moving Average (EWMA) 策略以及蒙地卡羅模擬法中的 Equally Weighted(EW)策略所建構的外幣投資組合可具有最佳的風險值績效表現。而進一步的回測結果(Backtesting)驗證,在99%的信賴水準效率性下,本研究提出的資產配置策略模型所估算的外幣投資組合風險值具有顯著的統計精確性。

This study deals with selecting the most appropriate technique predicting precisely the exchange rate risk. To gain that aim, we apply three main approaches, namely, the Historical Simulation Approach, the Variance-Covariance Approach and the Monte Carlo Simulation Approach. Covering daily data from 2009 to 2015 on the Taiwan foreign exchange market, our main finding shows that the EWMA (Historical Simulation) along with the Equally Weighted (Monte Carlo Simulation) exhibited the lowest loss as well as beat a benchmark, are the most optimal methods for VaR estimation. Moreover, results on backtesting suggest that seven of nine our proposed models work effectively at 99% confidence level during empirical period.

Abstract......i
摘要......ii
Acknowledgements......iii
Table of Contents......iv
List of Tables......vi
List of Figures......vii
Symbols......viii
Chapter 1 Introduction......1
1.1 Risk and Value at Risk......1
1.1.1 Risk......1
1.1.2 Value at Risk......4
1.2 Portfolio construction and evaluation......5
1.2.1 Portfolio construction......5
1.2.2 Portfolio evaluation......6
1.3 The structure of the study......6
Chapter 2 Literature Review......8
2.1 Value at Risk......8
2.2 Historical Simulation......9
2.3 Variance-Covariance approach......10
2.3.1 Equally Weighted......10
2.3.2 Modified Sharpe ratio Weighted......11
2.4 Monte Carlo Simulation......12
Chapter 3 Methodology......14
3.1 Historical Simulation......14
3.1.1 Equally weighted......14
3.1.2 EWMA......15
3.1.3 GARCH(1,1)......15
3.2.1 Equally weighted......16
3.2.2 Modified-Sharpe-ratio weighted......16
3.3 Monte Carlo Simulation......17
Chapter 4 Empirical Study......20
4.1 Data......20
4.2 Portfolio Construction......23
4.3 Portfolio Evaluation......28
4.4 The VaR exceptions......31
4.5 The accuracy of VaR models......32
4.5.1 Kupiec proportion of failure test......32
4.5.2 Independence test......34
4.5.3 Joint Tests of Unconditional Coverage and Independence......36
Chapter 5 Conclusion......38
5.1 Summary the study......38
5.2 Recommendation for further researches......39
References......41
Extended Abstract......45
Curriculum Vitae......51

[1] Alexander, C.O. (1996), Evaluating the use of Risk Metrics as a risk measurement tool for your operation: what are its advantages and limitations?, Derivatives: Use Trading and regulation, Vol.2, No.3, pp.277-285.
[2] Benartzi, S. and Thaler, R.H. (2001), A Naive Diversification Strategies in Defined Contribution Saving Plans, A America Economic Review, Vol.91, No.1, pp.79-98.
[3] Best, P. (1998), Implementing Value at Risk, West Sussex: John Wiley & Sons Ltd.
[4] Boyle, P (1977), Options: A Monte Carlo approach, Journal of Financial Economics, Vol.4, No.3, pp. 323–338.
[5] Bredin, D., Hyde, S. (2004), FOREX Risk: Measurement and evaluation using Value at Risk, Journal of Business Finance and Accounting, 31, pp.1389-1417.
[6] Campbell, M.L. (2005), A Review of Backtesting and Backtesting Procedures, Finance and Economics Discussion Series, Staff working paper No.21.
[7] Christoffersen P., Pelletier, D. (2004), Backtesting Value at Risk: A Duration-Based Approach, Journal of Financial Econometrics, Vol.2, No.1, pp.84-108.
[8] De Miguel, Garlappi and Uppal (2007), Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy ?, The Review of Financial Studies, Vol.22, No.5, pp.1915-1953.
[9] De Schepper, A. and Heijnent, B. (2010), How to estimate the Value at Risk under incomplete information, Journal of Computational and Applied Mathematics, 233, pp.2213-2226.
[10] Dowd, K. (1998), Beyond value at risk: The new science of risk management, John Wiley & Sons, Inc.
[11] Engle, R.F., Manganelli, S. (2004), CAViaR: Conditional Autoregressive Value at Risk by regression quantiles, Journal of Business and Economic Statistics, 22, pp.367-381.
[12] Giot, P. (2004), Modelling daily Value at Risk using realized volatility and ARCH type models, Journal of Empirical Finance, 11, pp.379-398.
[13] Gregoriou and Gueyie (2003), Risk-Adjusted Performance of Hedge Funds Using a Modified Sharpe Ratio, The Journal of Wealth Management, pp.77-83.
[14] Hendricks, D. (1996), Evaluation of Value at Risk Models Using Historical Data, Economic Policy Review, Vol.2, No.1, pp.39-69.
[15] Hertz, B.D. (1964), Risk Analysis in Capital Investment, Harvard Business Review, p.12.
[16] Holton, Glyn A. (2003), Value-at-Risk: Theory and Practice, San Diego: Academic Press.
[17] Hull, J. and White, A. (1998), Incorporating volatility updating into the historical simulation method for value at risk, Journal of Risk, pp.5-19.
[18] Hull, J.C. (2015), Risk Management and Financial Institutions, (4th edition), John Wiley & Sons, Inc., New Jersey.
[19] Jorion, P. (2007), Value at Risk: The New Benchmark for Managing Financial Risk, (3rd edition), McGraw-Hill, New York.
[20] Kupiec P. (1995), Techniques for Verifying the Accuracy of Risk Management Models, Journal of Derivatives, 3, pp.73-84.
[21] Linsmeier and Pearson (1996), Risk Measurement: An Introduction to Value at Risk, Financial Analysts Journal, Vol. 52, No. 6, pp.47-56.
[22] Markowitz, H. (1952), Portfolio Selection, Journal of Finance, Vol.7, No.1, pp.77-91.
[23] Markowitz, H. (1991), Portfolio selection: efficient diversification on investments, John Wiley & Sons, Inc.
[24] Morgan, J.P. (1996), Risk Metrics - Technical document, (4th edition), Morgan Guaranty Trust Company, New York.
[25] Pallota, M. and Zenti, R. (2000), Risk analysis for asset managers: Historical simulation, the bootstrap approach and value at risk calculation, working paper, RAS Asset Management.
[26] Penza, P. and Bansal, P.K. (2001), Measuring market risk with value at risk, John Wiley & Sons, Inc.
[27] Rejeb, A.B., Salha, O.B. and Rejeb, J.B. (2012), Value at Risk Analysis for the Tunisian Currency Market: A Comparative Study, International Journal of Economics and Financial Issues, Vol.2, No.2, pp.110-125.
[28] Roy, Arthur D. (1952), Safety first and the holding of assets, Econometrica, Vol.20, No.3, pp.431-449.
[29] Samuelson, et al (1988), Status Quo Bias in Decision Making, Journal of Risk and Uncertainty, Vol.1, No.1, pp. 7–59.
[30] Sarma, M., et al (2003), Selection of VaR models, Journal of Forecasting, Vol.22, No.4, pp.337-358.
[31] Schwert, G. W. (1989), Tests for Unit Roots: A Monte Carlo Investigation, Journal of Business and Economic Statistics, 7, pp.147-160.
[32] Sharpe, William F. (1963), A simplified model for portfolio analysis, Management Science, No.9, pp.277-293.
[33] Sharpe, William F. (1964), Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, Vol.19, No.3, pp.425-442.
[34] Srinivasan, A., and Shah, A. (2000), Improved techniques for using Monte Carlo in VaR estimation, National Stock Exchange Research Initiative, Working Paper.
[35] Wang, C.E., et al (2008), The performance of Asian airlines in the recent financial turmoil based on VaR and modified Sharpe ratio, Journal of Air Transport Management, 14, pp.257– 262.
[36] Ze-To S.Y.M (2012), Estimating value at risk under a Health-Jarrow-Morton framework with jump, Applied Economics, 44, pp.2729-2741.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊