跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱冠達
研究生(外文):Kuan-Ta Chu
論文名稱:使用軟體無線電平台實現LTE裝置對裝置通訊
論文名稱(外文):A Prototype of LTE Device-to-Device Communications Using Software Defined Radio Platforms
指導教授:連紹宇
指導教授(外文):Shao-Yu Lien
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:3GPP Release 12裝置對裝置通訊軟體無線電一按即通廣播式通訊
外文關鍵詞:3GPP Release 12 device-to-device communicationssoftware defined radiopush-to-talkbroadcast communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
裝置對裝置通訊(Device-to-Device, D2D, Communications)是3GPP Release 12中關鍵技術之一,該技術讓裝置之間不需要通過基地台直接交換數據,並且有效地改善頻譜效率、吞吐量、延遲以及能源消耗。3GPP Release 12中裝置對裝置通訊採用接收端不帶任何反饋訊息的廣播(broadcast)通訊,主要支援任務導向的一按即通(Mission Critical Push-to-Talk, MCPTT)服務。美國緊急救難網路管理局(First Responder Network Authority, FirstNet)在2011年採用3GPP Release 12 LTE-A包含裝置對裝置通訊技術做為下一代國家公共安全網路。考量到後續的測試、效能評估、應用開發以及進一步的系統優化,實現Release 12 裝置對裝置通訊原型有相當的重要性,該原型需包含必要功能如無線資源接取、實體層通道/信號產生、同步、等化和資料接收。本論文中,展示使用通用軟體無線電週邊設備(Universal Software Radio Peripheral, USRP)實現Release 12 裝置對裝置在網路覆蓋外通訊的原型。並以PTT傳遞音訊作為應用,進而評估由本原型進行裝置對裝置通訊傳輸導致的延遲及位元錯誤率,以驗證所提出裝置對裝置通訊原型的可運作性。

Device-to-Device (D2D) Communications have been recognized as one of the most crucial technologies in 3GPP Release 12, which provide direct data exchanges without any signal relay via base stations to promisingly improve spectrum efficiency, throughput, latency and energy consumption. In 3GPP Release 12 D2D, a particular form of broadcast communications without any feedback channel is adopted, and Mission Critical Push-to-Talk (MCPTT) services are the major application to be supported. Since 2011, the First Responder Network Authority (FirstNet) of the United States has adopted 3GPP Release 12 and thus D2D as the next generation nationwide public safety networks. For subsequent field try, performance evaluation, application development and further system optimization, a prototype of Release 12 D2D with necessary functions including radio resource access, physical channel/signal generation, synchronization, equalization and communication data reception is of crucial importance. In this thesis, a prototype implementation of Release 12 D2D using Universal Software Radio Peripherals (USRPs) is demonstrated, particularly emphasizing on communications in the out-of-network coverage scenario. Using PTT voice/audio services as a demonstrating application, the provided performance evaluation results in terms of transmission latency and bit error rate fully justify the practicability of the prototype.

摘要 ...................................................................i
Abstract ...............................................................ii
誌謝 ...................................................................iii
目錄 ...................................................................iv
表目錄 .................................................................vi
圖目錄 ................................................................vii
第一章 緒論 ............................................................1
第二章 裝置對裝置通訊之空中接口 ........................................10
2.1 無線資源管理 (Radio Resource Management, RRM) ......................10
2.2 無線電連結控制 (Radio Link Control, RLC) ...........................11
2.3 媒體存取控制 (Medium Access Control, MAC) ..........................11
2.4 實體邊緣通道 (Physical Sidelink Channel) ...........................11
2.4.1 實體邊緣控制通道 (Physical Sidelink Control Channel, PSCCH) ......12
2.4.2 實體邊緣共享通道 (Physical Sidelink Shared Channel, PSSCH) .......13
2.4.3 實體邊緣探索通道 (Physical Sidelink Discovery Channel, PSDCH) ....16
2.4.4 實體邊緣廣播通道 (Physical Sidelink Broadcast Channel, PSBCH) ....17
2.4.5 同步信號 (Sidelink Synchronization Signals) ......................18
2.4.6 解調參考信號 (Demodulation reference signals, DMRS) ..............21
2.5 裝置對裝置通訊程序 .................................................25
2.5.1 同步程序 .........................................................25
2.5.2 通訊程序 .........................................................27
第三章 軟體定義無線電平台 ..............................................29
第四章 系統架構 ........................................................33
4.1 單載波分頻多重存取 (Single-Carrier FDMA) ...........................38
4.2 訊框架構 (Frame structure) .........................................39
4.3 時槽架構及實體資源 (Slot structure and physical resources) .........39
4.3.1 資源網格 (Resource grid) .........................................39
4.3.2 資源單元 (Resource elements) .....................................41
4.3.3 資源塊 (Resource blocks) .........................................41
4.3.4 保護區間 (Guard period) ..........................................41
4.4 通道編碼與解碼 (Channel Coding and Decoding) .......................42
4.4.1 Tail biting convolutional coding .................................42
4.4.2 Turbo coding .....................................................43
4.5 調變與解調 (Modulation and Demodulation) ...........................51
4.6 循環前綴 (Cyclic Prefix) ...........................................52
4.7 符號邊界檢測和頻率偏移檢測 (Symbol Boundary Detection and Frequency Offset Estimation) ..56
4.8 通道估測與等化 (Channel Estimation and Equalization) ...............59
第五章 效能分析 ........................................................67
第六章 結論與未來展望 ..................................................78
參考文獻 ...............................................................80
附錄 ...................................................................83
Extended Abstract ......................................................98
簡歷(CV) ...............................................................102


[1] Cisco, “Cisco Visual Networking Index Forecast and Methodology, 2015–2020,” Jun. 2016.
[2] Cisco, “Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update, 2015–2020,” Feb. 2016.
[3] H.-Y. Hsieh and R. Sivakumar, “On using peer-to-peer communication in cellular wireless data networks,” IEEE Trans. Mobile Comput., vol. 3, no. 1, pp. 57-72, Jan-Feb, 2004.
[4] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to-device communication as an underlay to LTE-advanced networks,” IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009.
[5] M. Scott Corson, “Toward Proximity-Aware Internetworking,” IEEE Wireless Mag., vol. 17, no. 6, pp. 26-33, Dec. 2010.
[6] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device communications with Wi-Fi Direct: overview and experimentation: Overview and experimentation,” IEEE Wireless Commun., vol. 20, no. 3, pp. 96–104, Jun. 2013.
[7] M. Peng, Y. Li, T. Q. S. Quek, and C. Wang, “Device-to-device underlaid cellular networks under Rician fading channels,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4247–4259, Aug. 2014.
[8] Z. Zhou, M. Dong, K. Ota, J. Wu, and T. Sato, “Energy efficiency and spectral efficiency tradeoff in device-to-device (D2D) communications,” IEEE Wireless Commun., vol. 3, no. 5, pp. 485-488, Oct. 2014.
[9] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled deviceto-device communications in LTE-advanced networks,” IEEE Wireless Commun., vol. 19, no. 3, pp. 96–104, Jun. 2012.
[10] U.S. Department of Homeland Security, “Public Safety Communications Evolution,” May 2014.
[11] ETSI TR 102 580 V1.1.1 “Terrestrial Trunked Radio (TETRA); Release 2; Designer''s Guide; TETRA High-Speed Data (HSD); TETRA Enhanced Data Service (TEDS),” Oct. 2007.
[12] G. Fodor, S. Member, S. Parkvall, S. Member, S. Sorrentino, P. Wallentin, Q. Lu, and N. Brahmi, “Device-to-Device Communications for National Security and Public Safety,” IEEE Access, vol. 2, pp. 1510 - 1520, Dec. 2014.
[13] R. Ferrús, O. Sallent, G. Baldini, and L. Goratti, “LTE: The technology driver for future public safety communications,” IEEE Commun. Mag., vol. 51, no. 10, pp. 154–161, Oct. 2013.
[14] J. Feng, “Device-to-Device Communications in LTE-Advanced Network,” Theses, Télécom Bretagne, Université de Bretagne-Sud, Dec. 2013.
[15] B. Muhammad and A. Mohammed, "Uplink closed loop power control for LTE system," Proc. IEEE Int. Conf. Emerging Technol., pp. 88-93, Oct. 2010.
[16] 3GPP TR 22.803 V12.2.0 “Feasibility study for Proximity Services (ProSe),” Jun. 2013.
[17] 3GPP TR 36.843 V12.0.1 “Study on LTE device to device proximity services; Radio aspects,” Mar. 2014.
[18] 3GPP TR 23.703 V12.0.0 “Study on architecture enhancements to support Proximity-based Services (ProSe),” Feb. 2014.
[19] 3GPP website announcement, “FCC selects LTE for USA Public Safety,” http://www.3gpp.org/news-events/12-news-events-others/press-clippings/1332-FCC-selects-LTE-for-USA-Public-Safety.
[20] FCC, “Third Report and Order and Fourth Further Notice of Proposed Rulemaking, WT Docket No. 06-150, PS Docket No. 06-229, WP Docket No. 07-100,” Comments Of The National Public Safety Telecommunications Council, Jan. 2011.
[21] National Public Safety Telecommunications Council, 700 MHz Statement of Requirements for Public Safety (SoR),” http://www.npstc.org/statementOfRequirements.jsp.
[22] “TETRA Release 1: Direct Mode Operation,” http://www.tetramou.com/about/page/12026.
[23] 蘇明勇,下世代D2D通訊的發展現況與重要議題,IEK產業情報網,2013年10月。
[24] J. Mitola, “Software radios: survey, critical evaluation and future directions,” IEEE Aerosp. Electron. Syst. Mag., vol. 8, pp. 25-31, Apr. 1993.
[25] J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, no. 5, pp. 26–38, May 1995.
[26] S.-Y. Lien, C.-C. Chien, F.-M. Tseng, and T.-C. Ho, “3GPP device-to-device communications for beyond 4G cellular networks,” IEEE Commun. Mag., vol. 54, no. 3, pp. 29-35, Mar. 2016.
[27] Rohde & Schwarz: White Paper 1MA252 “LTE- Advanced (3GPP Rel.12) Technology Introduction,” Jun. 2014.
[28] Rohde & Schwarz: White Paper 1MA264 “Device to Device Communication in LTE,” sep. 2015.
[29] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless Transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30–38, Sep. 2006.
[30] H. G. Myung, J. Lim, and D. J. Goodman, “Peak-to-average power ratio of single carrier FDMA signals with pulse shaping,” in Proc. 17th Annu. IEEE Int. Symp. PIMRC, Helsinki, Finland, pp. 1–5, Sep. 2006.
[31] 3GPP TS 36.300 V12.9.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,” Mar. 2016.
[32] 3GPP TS 36.211 V12.8.0 “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,” Dec. 2015.
[33] 3GPP TS 36.212 V12.8.0 “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding,” Mar. 2016.
[34] 3GPP TS 36.213 V12.9.1 “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” Mar. 2016.
[35] Qualcomm Inc. “R1‑150459: Discussion on PSBCH size and signal design,” 3GPP TSG-RAN WG1 #80 9th – 13th, Feb. 2015.

[36] 3GPP TS 23.979 V12.0.0 “3GPP enablers for Open Mobile Alliance (OMA); Push-to-talk over Cellular (PoC) services; Stage 2,” Sep. 2014.
[37] NI USRP™-2921 Device Specifications, National Instruments Corporation, 2012-2014.
[38] NI USRP-292x/293x Datasheet, http://www.ni.com/datasheet/pdf/en/ds-355, Aug. 2013.
[39] 3GPP TS 36.101 V12.11.0 “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception,” Mar. 2016.
[40] Simon Haykin, Digital Communication Systems, 1st Edition, Wiley, 2013.
[41] J.-J. van de Beek, M. Sandell, and P. O. Bö,rjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, Jul. 1997.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top