跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇彥璋
研究生(外文):Yan-Jhang Su
論文名稱:YInGe2O7共摻Pr3+,Sc3+螢光粉之光致發光特性研究
論文名稱(外文):Synthesis and Photoluminescence Properties of Pr3+ and Sc3+ co-doped YInGe2O7 phosphors
指導教授:張益新
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:螢光粉溶膠凝膠法Pr3+離子
外文關鍵詞:phosphorsol-gel methodPr3+ ion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法製備YInGe2O7作為螢光粉主體,並摻雜不同濃度之稀土金屬離子Pr3+作為發光中心,共摻Sc3+離子觀察摻雜濃度對螢光粉之晶體結構與發光特性之影響。
在由YInGe2O7摻雜Pr3+離子螢光粉系列,XRD分析結果顯示,在煆燒溫度1200 oC,持溫6小時條件下,可得到單斜晶系YInGe2O7之結構。且隨著Pr3+離子摻雜濃度增加至20 mol%皆為單一相,並無二次相生成。而在SEM分析方面,YInGe2O7:Pr3+螢光粉表面型態皆為不規則形狀,隨著Pr3+離子濃度增加,螢光粉顆粒尺寸有逐漸增加之趨勢。在主體248 nm激發下,其放射由主體本身發光及Pr3+離子的3P03H4,5,6、3F2和1D23H4之電子躍遷所造成,發光帶分佈於350 ~ 450 nm、480 ~ 510 nm、530 ~ 560 nm、600 ~ 620 nm、625 ~ 640 nm、645 ~ 660 nm中。當Pr3+離子濃度為0.5 mol%時有最佳放射,CIE色度座標隨摻雜濃度增加由橘紅光區偏移至近白光區再偏移至藍光區。在451 nm直接激發下,其主要放射光波長坐落於480~510 nm和600~620 nm之間屬於Pr3+離子之3P03H4和1D23H4之電子躍遷所造成,當Pr3+離子濃度為10 mol%時,發生濃度淬滅效應有最強的綠光放射,CIE色度座標隨摻雜濃度增加由黃綠光區偏移至綠光區。
此外在YInGe2O7共摻Pr3+,Sc3+螢光粉系列中,固定Pr3+離子濃度為3 mol%,共摻不同濃度的Sc3+離子。在248激發下,當Sc3+離子摻雜濃度為3 mol%時,發光能帶1D2→3H4能階躍遷強度有明顯增強,發光峰值為608 nm,CIE色度座標隨摻雜濃度增加會先偏移至粉色區偏移回近白光區。


In this study, YInGe2O7 phosphor was selected as the host material, doped with different Pr3+ ion concentrations, co-doped with Sc3+ ion, and the crystal structure, photoluminescence properties were then investigated.
For Pr3+ ion-doped YInGe2O7 phosphors, the XRD results show that the crystal structure can be attributed to the monoclinic YInGe2O7 structure calcined 1200 oC for 6 h. The peaks are single phase and no secondary phases appear when the Pr3+ ions concentrations increase to 20 mol%.The SEM results show that there are irregular shapes for surface morphology and the grain size become bigger as the Pr3+ concentration increased. By host 248 nm excitation, the emission band appear in the range of 350 ~ 450 nm, which is attributed to the YInGe2O7 host.A series of sharp emission band appear in the range of 480 ~ 510 nm、530 ~ 560 nm、600 ~ 620 nm、625 ~ 640 nm、645 ~ 660 nm, respectively corresponding to the 3P03H4,5,6、3F2 and 1D23H4 electron transition of the Pr3+ ion.By 451 nm direct excitation, the main emission band appear in the range of 480~510 nm, 600~620 nm, respectively corresponding to the 3P03H4 and 1D23H4 electron transition of the Pr3+ ion.The strongest green emission appear when the Pr3+ ion concentrations increase to 10 mol%, the CIE chromaticity coordinates shift to the green region from yellowish-green region appear with concentration increased.
In addition, in order to enhance the photoluminescence properties of YInGe2O7: Pr3+ phosphors, the Pr3+ ion concentrations was fixed for 3 mol% and doped with different Sc3+ ion concentrations. By 248 nm excitation, the 1D23H4 emission intensities were enhanced for Pr3+ ion concentrations is 3 mol%, the CIE chromaticity coordinates shift to the white light region from pink region appear with concentration increased.


目錄
摘要...i
Abstract...ii
誌謝...iii
目錄...iv
表目錄...viii
圖目錄...ix
第 一 章 緒論...1
1-1 前言...1
1-2 研究動機與目的...2
第 二 章 理論基礎與文獻回顧...5
2-1 發光的定義...5
2-1-1 激發源的種類與應用...5
2-2 螢光材料簡介...6
2-2-1 有機螢光材料...6
2-2-2 無機發光材料...6
2-3 發光機制簡介...7
2-3-1 螢光與磷光之關係...7
2-4 固態材料中的光致發光現象...8
2-4-1 本質型發光(intrinsic luminescence)...8
2-4-2 外質型發光(extrinsic luminescence)...9
2-5 發光機制簡介...10
2-5-1 發光原理與過程...10
2-5-2 組態座標(configuration coordination)...10
2-5-3 史托克位移(stokes shift)...11
2-5-4 能量轉移(energy transfer)...11
2-5-5 電子-聲子交互作用(electron-phonon interaction)...12
2-5-6 交叉緩解(cross relaxation)...12
2-5-7 非輻射躍遷(non-radiative transition)...12
2-6 影響發光特性與效率的主要因素...12
2-6-1 主體晶格效應(host lattice effect)...13
2-6-2 濃度淬滅效應(concentration quenching effect)...13
2-6-3 熱消淬效應(rhermal quenching)...13
2-6-4 毒劑效應(poisoning)...13
2-6-5 螢光共振能量轉移(FRET, fluorescence resonance energy transfer)...14
2-7 螢光體的組成與選擇...14
2-7-1 主體晶格的選擇...14
2-7-2 活化劑的選擇...14
2-7-3 抑制劑的避免...14
2-8 螢光粉體之合成技術...15
2-8-1 固相反應法(solid-state method)...15
2-8-2 溶膠-凝膠法(sol-gel method)...15
2-8-3 稀土離子發光特性...16
2-9 鍺酸鹽YInGe2O7晶體簡介...17
第 三 章 實驗方法與步驟...34
3-1 實驗流程...34
3-2 實驗材料...34
3-3 成份與結構分析...34
3-3-1 X光繞射(X-ray diffraction analysis, XRD)分析...34
3-3-2 場發射掃描式電子顯微鏡(field emission scanning electron microscopy, FE-SEM)分析...34
3-4 螢光粉體之光學特性分析...35
3-4-1 吸收光譜(absorption spectrum)...35
3-4-2 螢光光譜儀(photoluminescence, PL)特性量測...35
3-4-3 CIE色度座標分析(analysis of C.I.E chromaticity diagram)...35
第 四 章 結果與討論...39
4-1 以溶膠凝膠法合成YInGe2O7螢光粉...39
4-1-1 示差掃描(DSC)分析...39
4-1-2 XRD結構分析...39
4-1-3 場發射掃描式電子顯微鏡(FE-SEM)表面形態分析...39
4-1-4 激發與放射光譜分析...40
4-1-5 CIE色度座標...40
4-1-6 結論...40
4-2 以溶膠凝膠法合成Y1-xPrxInGe2O7螢光粉...48
4-2-1 Y1-xPrxInGe2O7螢光粉之XRD結構分析...48
4-2-2 場發射掃描式電子顯微鏡(FE-SEM)表面型態分析...48
4-2-3 Y1-xPrxInGe2O7螢光粉之吸收光譜分析...48
4-2-4 Y1-xPrxInGe2O7螢光粉之激發光譜分析...49
4-2-5 Y1-xPrxInGe2O7螢光粉之放射光譜分析...49
4-2-6 CIE色度座標...51
4-2-7 結論...52
4-3 以溶膠凝膠法合成Y0.97-yScyPr0.03InGe2O7螢光粉...68
4-3-1 Y0.97-yScyPr0.03InGe2O7螢光粉之XRD結構分析...68
4-3-2 FE-SEM 表面型態分析...68
4-3-3 Y0.97-yScyPr0.03InGe2O7螢光粉之吸收光譜分析...68
4-3-4 Y0.97-yScyPr0.03InGe2O7螢光粉之激發光譜分析...68
4-3-5 Y0.97-yScyPr0.03InGe2O7螢光粉之放射光譜分析...68
4-3-6 CIE色度座標...69
4-3-7 結論...69
第 五 章 總結論...79
參考文獻...80
Extended Abstract...84
簡歷...87


參考文獻
[1]劉如熹、劉宇桓,“發光二極體用氧氮螢光粉介紹?,全華科技(2006)。
[2]劉如熹、王健元、石景仁,“白光發光二極體之螢光粉材料介紹”,光訊第91期,p.30,2001年8月。
[3]S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press, Boca Raton (1999).
[4]Y. S. Chang, H. J. Lin, Y. L. Chai, Y. C. Li, “Preparation and luminescent properties of europium-activated YInGe2O7 phosphors” J. Alloy. Compd. 460 (2008) 421.
[5]Z. Liu, Y. Li, Y. Xiong, D. Wang, Q. Yin, “Electroluminescence of SrAl2O4:Eu2+ phosphor”, Microelectronics Journal 35 (2004) 375.
[6]W. T. Hsu, W. H. Wu, C. H. Lu, ” Synthesis and luminescence properties of nano-sized Y3Al5O12:Eu3+ phosphors ” Mater. Sci. Eng. B104 (2003) 40.
[7]S. D. H., S. P. Khatkar, V. B. Taxak, G. S., D. K., “Synthesis, luminescence and effect of heat treatment on the properties of Dy3+-doped YVO4 phosphor” Mater. Sci. Eng. B 129 (2006) 126.
[8]Y. C. Li, Y. H. Chang. Li, Y. F. Lin, Y. S. Chang, Y. J. Lin, “Synthesis and luminescent properties of Ln3+( Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germinate LaAlGe2O7 phosphors” J. Alloy. Compds. 439 (2007) 367.
[9]Dong-Kuk Kim, Sung-Ho Hwang, In-Gyu Kim, Jung-Chul Park, Song-Ho Byeon “Low-temperature synthesis of fine BaMgAl10O17:Eu2+ phosphor based on the solubility isotherms” Journal of Solid State Chemistry 178 (2005) 1414–1421.
[10]項鈺軒,“以溶膠-凝膠法製備BaY2-xLaxZnO5:Eu3+ (x=0~0.36)螢光粉及其光致發光性質研究”,國立國立虎尾科技大學光電與材料科技研究所碩士論文,民國100年。
[11]楊素華,“螢光粉在發光上的應用”,科學發展358期,2002 年10 月,pp.67~68。
[12]V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21 (2009) 2077–2084.
[13]A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar,Chem. Mater. 18 (2006) 3314–3322.
[14]林暉然,“鍺酸鹽YxInGe2O7:R1-x(R=Eu, Tb, Tm)之螢光特性研究”,國立成功大學材料科學及工程學系碩士論文,pp11~42,民國95年。
[15]戴品綸,“Y1-xInGe2O7:Mx3+(M = Bi, Sm, Er, Dy)之合成與光致發光特性研究”,國立國立虎尾科技大學光電與材料科技研究所碩士論文,民國98年。
[16]張祐嘉,“(Y1-x-yPrxLay)InGe2O7(x=0~0.2, y=0~0.2)系之光致發光特性研究”,國立國立虎尾科技大學電子工程研究所碩士論文,民國102年。
[17]G. S. R. Raju, J. Y. Park, H. C. Jung, R. Balarkrishnaiah, B. K. Moon, and J. H. Jeong , “Synthesis, structural and luminescent properties of Pr3+ activated GdAlO3 phosphors by solvothermal reaction method”, Curr. Appl. Phys., 11, S292-S295 (2011).
[18]B. Mercier, C. Dujardin, G. Ledoux, D. Nicolas, B. Masenelli, P. Melinon, “Effect of the quantum confinement on the luminescent properties of sesquioxydes?J. Lumin. 122-123 (2007) 756-758
[19]D.R. Vij ,“Luminescence in Solids”, Plenum press, New York (1988).
[20]徐敘瑢、蘇勉增,發光學與發光材料 , p2,2004年。
[21]羅浚仁,“照明用螢光粉”,電機月刊,第十二卷,五期,pp.165-175,2002年5月。
[22]楊富涵,“氧化鋁添加軟鋁石之混合漿料懸浮與流變行為及其應用研究”,南台科技大學化學工程研究所碩士論文,pp.29-61,民94年6月。
[23]B.Mercier, C. Dujardin, G. Ledoux, D. Nicolas, B. Masenelli, P. Melinon, “Effect of the quantum confinement on the luminescent properties of sesquioxydes?J.Lumin. 122-123 (2007)220-222
[24]J. A. Deluca, “An Introduction to Luminescence in Inorganic Solids”, J. Chem. Edu. 57 (1980) 541-545.
[25]N. I. Meyer and F. P. Jeasen, “Hot electron from silicon p-n junctions produced by ion implantation”, J. Appl. Phys, 37 (11), 4297 (1996).
[26]G. Blasse and B. C. Grabmaier, “Luminescence Materials”, Springer Verlag, Berlin Heidelberg, p.245 (1991).
[27]S. Tanimizu, “Luminescence center of ns2-type ions”, Phosphor Handbook, CRC press, Florida, 141-152 (1999).
[28]M. Tamatani, “Luminescence center of transition metal ions”, Phosphor Handbook, CRC press, Florida, 153-176 (1999).
[29]M. Morita, “Luminescence centers of complex ions, Phosphor Handbook”, CRC press, Florida, 201-212 (1999).
[30]T. Kano, “Luminescence centers of rare-earth ions, Phosphor Handbook”, CRC press, Florida, 177-200 (1999).
[31]陳昱霖,“柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,2001。
[32]H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, “Photoluminescence of YVO4:Tm phosphor prepared by a polymerizable complex method”, Solid State Commun., 132, 527–531 (2004).
[33]柯以侃、吳明珠,“儀器分析”,新文京開發出版有限公司,2003。
[34]蔡濱祥,“尖晶石(MgxZn1-x)(In2-yGay)O4: Eu3+, Tb3+螢光粉體製備及其光致發光特性研究”,國立成功大學材料科學及工程學系博士論文,2005。
[35]G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer. Verlag Berlin Heidelberg (1994).
[36]李育群,“鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究”,國立成功大學材料科學及工程學系博士論文,2007。
[37]林心雁,“Mg2-xCaxLaTaO6 (X=0 ~ 2.0)系之光致發光特性研究”,國立成功大學材料科學及工程學系碩士論文,(民國97年)。
[38]張翌誠,“Li3Ba2Gd3(MoO4)8:稀土離子螢光粉光致發光特性研究”,國立成功大學材料科學及工程學系碩士論文,(民國98年)。
[39]A. H. Kitai, “Solid State Luminescence”, Chapman & Hall press, Cambridge (1993).
[40]方客川,“固態光譜學”,中國科技大學出版社,中國,2001年。
[41]A.J. Kenyon, “Recent developments in rare-earthdoped materials for optoelectronics”, Progress in Quantum Electronics 26 (2002) 225
[42]H. Yamamoto, “IIa-VIb compounds?, Phosphor Handbook, CRC press (1999) 217-230).
[43]S. Kuboniwa, H. Kawain and T. Hoshima, “Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor”, Jpn. J. Appl. Phys. 19 (1980) 1647.
[44]M. Tabei, S. Shionoya and H. Ohmatsu, “Mechanism of the Killer Effect of Iron-Group Ions on the Green Luminescence in ZnS:Cu,Al phosphors”, Jpn. J. Apply. Phys.14 (1975) 240.
[45]G. Blasse and B. C. Grabmaier,“Luminescence Materials”, Springer-Verlag Berlin Heidelberg (1994) 1-3
[46]R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, B.V., The Netherlands, (1991) p.245.
[47]劉如熹、王健源,”白光發光二極體用製作技術”,全華技術,(2001)。
[48]R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, (1991).
[49]R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherland, Chapter 8 (1991).
[50]張中太,張俊英編著,“無機光致發光材料及應用”,北京:化學工業出版社,2005年2月,p128。
[51]劉如熹、劉宇恒編著,“發光二極體用氧氮螢光粉介紹”,全華科技圖書,中華民國95年,pp2-2~2-4。
[52]施昭榮,“釩酸鹽 InVO4:Eu3+螢光粉之製備與光致發光特性研究”,國立國立虎尾科技大學光電與材料科技研究所碩士論文,民國99年。
[53]Jos’e Apuleyo Hern’andez-Pe’res, Maria-Elena Villfuerte-Castrejon, and Lauro Bucio, Acta Crystallographica section E, E61,i23, (2005).
[54]E. A. Juarez-Arellano, L. Bucio, J. L. Ruvalcaba, R. Moreno-Tovar, J. F. Garcia- Robledo, and E. Orozco, “The crystal structure of InYGe2O7 germanate”, Z. Kristall., 217 , 201 (2002).
[55]H. E. Kissinger, "Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis" J. RES. NBS. 57 (1956) 217.
[56]X. Zhang, J. Zhang, X. Ren, X. J. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3:Pr3+ nanoparticles prepared by a coprecipitation technique” J. Sol. Sta. Che. 181 (2008) 393–398
[57]L. Ge, M. Xu, H. Fang, “Synthesis and characterization of the Pd/InVO4– TiO2 co-doped thin films with visible light photocatalytic activities” App. Sur. Sci. 253 (2006) 2257-2263
[58]Y. S. Chang, H. J. Lin, Y. C. Li, Y. L. Chai, and Y. Y. Tsai, “Synthesis and luminescent properties of Tb3+ -activated yttrium indium germinate phosphor”, J. Solid State Chem., 180, 3076-3077 (2007).
[59]H. E. Hoefdraad and G. Blasse, “Green emitting praseodymium in calcium zirconate”, Phys. Stat. Sol. (a), 29, K95 (1975).
[60]C. D. M. Donega, A. Meijerink and G. Blasse, “Non-radiative relaxation processes of the Pr3+ion in solids”, J. Phys. Chem. Solids, 56, 673-685 (1995).
[61]P. Dorenbos, “The transitions of the trivalent lanthanides in halogenides and chalcogenides”, J. Lumines., 91 (2000).
[62]N. Kristianpoller, A. Shmilevich, D. Weiss, R. Chen and N. Khaidukov, “Luminescence of LiKYF5:Pr3+ crystals”, Radiat. Meas., 33, 637-640 (2001).
[63]H. Dornauf, J. Heber, “Concentration-dependent fluorescence-quenching in La1-xPrxP5O14”, J. Lumines., 22, 1-16 (1980).
[64]M.J Weber, “Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate”, Phys. Rev. B, 8 (1973), 54 (1993).
[65]C. H. Liang, Y. C. Chang, Y. S. Chang, “Enhancement of Luminescence properties by Sr2+ Substituting Ba2+ in Red-Emitting Phosphors:Ba1-xSryLa2-xZnO5:xEu (x=0-1, y=0-0.7)”, J. Electrochem. Soc., 156(10), J303-J307 (2009).
[66]E. A. Juarez-Arellano, J. Campa-Molina , S. Ulloa-Godinez , L. Bucio and E.Orozco , “Crystallochemistry of Thortveitite-Link and Thortveitite-Type Compounds”, Mater.Res.Soc.Symp.Proc., 848, 293 (2005).
[67]梁志豪,“Ba1-xSrxM2ZnO5 (M:Y, La)(x=0~1)系之光致發光特性之研究”,國立成功大學材料科學及工程學系碩士論文,民國96年。
[68]E. Botcharovaa, M. Heilmaiera, J.Freudenbergera, G. Drewa, D. Kudashowb, U. Martinb, “Supersaturated solid solution of nibium in copper by mechanical alloying”, J. Alloy. Compd., 351, 119-125 (2003).
[69]D. Sarkar, M. C. Chu, S. J. Cho, Y. I. Kim, “Synthesis and Morphological Analysis of Titanium Carbide Nanopowder”, J. Am. Ceram. Soc., 92, 2877-2882 (2009).
[70]Joshua D. Sayre, Kris T. Delaney, Nicola A. Spaldin, “Interplay between strain and oxygen vacancies in lanthanum aluminate”, Mater. Sci., 1202.1431 (2012).
[71]Mu Gu*, Lihong Xiao, Xiaolin Liu, Rui Zhang, Bingjie Liu, Xin Xu, “Highly enhanced luminescence of GdTaO4:Eu3+ phosphors by codoping with Zn2+ ions”, J. Alloy. Compd., 426, 390–394 (2006).
[72]Bingjie Liu, Mu Gu, Xiaolin Liu, Chen Ni, Di Wang, Lihong Xiao, Riu Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor”, J. Alloy. Compd., 440, 341-345 (2007).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊