跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴麒霆
研究生(外文):Chi-Ting Lai
論文名稱:異形活塞筒沖壓製程設計與分析
論文名稱(外文):Design and Analysis of Stamping Process for a Cylindrical Part
指導教授:陳立緯
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:136
中文關鍵詞:有限元素分析引伸成形彎曲成形304不鏽鋼
外文關鍵詞:Finite element analysisDrawing formingBendingSUS304
相關次數:
  • 被引用被引用:1
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
引伸成形是金屬板材成形中最重要的技術之一,在引伸加工成形領域中,已經有許多對於引伸製程參數相關之研究,有限元素分析軟體對於引伸製程之模擬與預測亦可達到一定的可靠度,本研究應用有限元素分析軟體(PAM-STAMP),結合實際生產人員的現場試模經驗,針對圓筒形零件-異形活塞的沖壓製程進行成形分析,以改善實際生產過程中,板材經過多道次成形部分厚度變薄甚至出現破裂等缺陷,並配合田口實驗方法,對模具進行最佳化設計,以減少成品成形道次與需再進行車銑加工等製程,並探討引伸加工中壓料板壓料力及其負荷曲線,對於引伸加工成形之影響。
經研究結果顯示,應用引伸成形製程,須以七道次成形才可將異形活塞之圓筒外形加工成形,而引伸與引縮成形複合之製程,對於圓筒件之外形加工只需五道次成形,故應用引伸與引縮成形複合之製程將可減少圓筒件引伸之成形道次。其中板材與模具間之摩擦係數對低引伸比的成形厚度影響不大,而對於高引伸比之成形厚度將有顯著的差異。透過田口實驗方法對圓筒件引伸成形進行最佳化分析,可使成品最小厚度增加與最大厚度減小,且可降低引伸成形之成形負荷。在壓料板彈簧力部分,不同的壓料力負荷曲線,雖然其最大負荷相同,但在成形過程中,會使板材在同一沖壓行程時有不同的變化,因而使成形後之成品厚度有所差異。在沖剪與彎曲成形部分,外凸形式下料線經彎曲成形後,會使彎曲區域產生材料堆積,但可降低板材因彎曲成形所造成拉伸過度而破裂的情況產生,而內凹形式則反之,經彎曲件回彈分析,內凹0.3mm形式之回彈角為最小。
經實際量測與模擬分析結果比對後,其成品厚度最大誤差為9.69%,而最小誤差則為4.11%,故可驗證PAM-STAMP有限元素軟體應用於異形活塞之沖壓製程,其具有一定之可行性與可靠性,且有助於了解沖壓件的成形過程、應力、應變、成形極限與成形負荷等情況,能更有效的預測或預防成品缺陷的產生,以增進生產效益。


Many studies have been proposed in drawing process. The finite element method can achieve a certain reliability for the drawing process simulation and prediction. The research applied finite element analysis software (PAM-STAMP), along with manufacturer''s experience, to analyze the stamping production process for cylindrical component, as well as improving some defect of cracks due to lessening in thickness from repetitive sheet molding. And, with taguchi method, die design was optimized to reduce number of repetitive molding and other machining processes. The effect of blankholder force and its load curve on the product formability would also be investigated.
Result showed the application of drawing process would require 7 steps to finalize the forming of cylindrical component, while the combined machining process of drawing and ironing could reduce it to 5 steps. The friction coefficient of sheet and die had less impact on the thickness of product with low drawing ratio, but varied significantly for higher drawing ratio product. By taguchi method to optimize the drawing process, it could increase the minimum and reduce the maximum for the optimal product thickness to decrease the load. As for the blankholder spring force of different load curves, even though they might exhibit the same maximum loading force, the sheet under the same stamping process might still develop variation during the molding process, resulting in different product thickness. Part of stamping and bending, the convex forming process would result in accumulation of material at the bend, but could reduce chance of cracks due to excessive sheet drawing, while the concave forming process resulted in the opposite. The springback analysis showed that the concave forming process had the smallest springback angle.
From the actual measurement and analysis comparison, the maximum error in product thickness was 9.69%, and the minimum was 4.11%. It proved the plausibility and reliability of using analytic software for the stamping procedure, and it could help to understand the forming process, stress, strain, forming limit and forming load of a forming stamped component, in order to effectively predict and even prevent defect formation, to further improve the productivity.


摘要...i
Abstract...iii
誌謝...v
目錄...vi
表目錄...x
圖目錄...xii
符號說明...xix
第一章 緒論...1
1.1 前言...1
1.2 研究動機與目的...2
1.3 研究方法與步驟...2
1.4 文獻回顧...4
1.4.1 沖剪成形...4
1.4.2 引伸成形...5
1.4.3 彎曲成形...6
1.5 論文總覽...7
第二章 基礎理論...8
2.1 沖剪成形...8
2.1.1 模具間隙...8
2.2 引伸成形...10
2.2.1 引伸胚料展開...10
2.2.2 引伸加工製程...11
2.3 彎曲成形...13
2.3.1 彈回現象...14
2.4 材料延性破壞準則...15
2.5 金屬成形之有限元素分析理論...17
第三章 研究方法...19
3.1 材料性質試驗...19
3.1.1 實驗原理...19
3.1.2 實驗步驟...20
3.2 異形活塞與道次設計...23
3.2.1 異形活塞...23
3.2.2 道次設計...23
3.3 有限元素模擬分析...24
3.3.1 PAM-STAMP軟體簡介...24
3.3.2 沖剪製程模擬規劃...25
3.3.3 引伸製程模擬規劃...27
3.3.4 引伸與引縮製程模擬規劃...30
3.3.5 彎曲製程模擬規劃...31
3.4 實驗方法...32
3.4.1 模具製作...32
3.4.2 沖壓實驗...32
3.5 田口品質方法...33
第四章 結果與討論...34
4.1 材料特性分析...34
4.2 沖剪成形分析...36
4.3 引伸成形分析...38
4.3.1 摩擦係數分析...38
4.3.2 引伸成形分析...45
4.3.3 引伸與引縮成形分析...68
4.3.4 壓料力對成形性之分析...76
4.4 彎曲成形分析...80
4.4.1 彎曲件成形性分析...80
4.4.2 彎曲件應力分析...83
4.4.3 回彈分析...85
4.5 製程最佳化分析...86
4.6 模具設計...99
4.7 模擬與實驗結果比對...103
4.8 成品尺寸量測...106
第五章 結論與建議...107
5.1 結論...107
5.2 建議...108
參考文獻...109
附錄...112
Extended Abstract...130
簡歷...136


[1] Gang Fang, Pan Zeng, Lulian Lou, 2002, "Finite element simulation of theeffect of clearance on the forming quality in the blanking process", Journal of Materials Processing Technology, Vol 122, pp. 249-254.
[2] Nobuo Hatanaka, Katsuhiko Yamaguchi, Norio Takakura, Takasi Iisuka, 2003, "Simulation of sheared edge formation process in blanking of sheet metals", Journal of Materials Technology, Vol 140, pp.628-634.
[3] 林明宏,2007,”微衝剪之成形模擬與剪斷面品質之研究”,模具技術與論文發表會論文集,pp.73-79。
[4] C. Husson, J.P.M. Correia, L. Daridon, S. Ahzi, 2008, "Finite elements simulations of thin copper sheets blanking: Study of blanking parameters on sheared edge quality", Journal of materials processing technology, Vol.199, pp. 74–83.
[5] Sutasn Thipprakmas, Masahiko Jin, Kanaizuka Tomokazu, Yamamoto Katsuhiro, Masao Murakawa, 2008, "Prediction of Fine blanked surface characteristics using the finite element method(FEM)", Journal of Materials Processing Technology, Vol.198, pp. 391–398.
[6] 江書豪,2014,”L形工件多道次精微沖切製程參數對回彈量影響之研究”,國立成功大學機械工程系碩士班碩士論文。
[7] 蔡明達,2014,”連續輥軋鈑金產品之沖切模具設計”,國立高雄應用科技大學模具工程系碩士班碩士論文。
[8] 林哲安,2015,”電磁鋼板之沖切斷面品質與殘留應力分析”,國立高雄應用科技大學模具工程系碩士班碩士論文。
[9] Z. Zimniak, 2000, "Implementation of the forming limit stress diagram in FEM simulations", Journal of Materials Processing Technology, Vol 106, pp. 261-266.
[10] D. H. Park, S. S. Kang, S. B. Park, 2001, "A study on the improvement of formability for elliptical deep drawing processes", Journal of Materials Processing Technology, Vol 113, Issues 1-3, pp. 662-665, June.
[11] Kim, Se-Ho, Kim, Seung-Ho and Huh,Hoon, 2002, "Tool design in a multi-stage drawing and ironing process of a rectangular cup with a large aspect ratio using finite element analysis", International Journal of Machine Tools and Manufacture, Vol 42, Issue 7, pp. 863-875.
[12] Manabu Gotoh, Young-soo Kim, Minoru Yamashita, 2003, "A fundamental study of can forming by the stretch-drawing process", Journal of Materials Processing Technology, Vol 138, Issues 1-3, pp. 545-550, July.
[13] Vahid Vahdat, Sridhar Santhanam, Young W. Chun, 2006, "A numerical investigation on the use of drawbeads to minimize ear formation in deep drawing", Journal of Materials Processing Technology, Vol 176, Issues 1-3, pp. 70-76, June.
[14] Kim, Heung-Kyu, Hong, Seok Kwan, 2007, "FEM-base optimum design of multi-stage deep drawing process of molybdenum", Journal of Materials Processing Technology, Vol.184, pp. 354-362.
[15] 呂光明,2010,”應用田口法於方杯引伸製程參數之研究”,建國科技大學自動化工程系暨機電光研究所碩士論文。
[16] 翁義福,2013,”不鏽鋼板材多道次圓筒引伸之研究”,國立高雄應用科技大學模具工程系碩士在職專班碩士論文。
[17] 林群富,2014,”可變高度之壓料條輔助於薄板引伸之分析與應用”,國立高雄應用科技大學模具工程系碩士班碩士論文。
[18] 詹明儒,2015,”電子鎖外殼引伸成形與模具設計”,國立國立虎尾科技大學機械與電腦輔助工程系碩士在職專班碩士論文。
[19] A. Nilsson, L. Melin, and C. Magnusson, 1995, "Finite element simulation of V-die bending: a comparison with experimental results", Journal of Materials Processing Technology, Vol. 65, pp. 52-58.
[20] H. Livatyali, H.C. Wu and T. Altan, 2001, "Prediction and elimination of springback in straight flanging using computer aided design methods - Part 1. Experimental investigations", Journal of Materials Processing Technology, Vol 117, pp. 262-268.
[21] V. Esat, H. Darendeliler and M.I. Gokler, 2002, "Finite element analysis of springback in bending of aluminium sheets", Materials and Design, Vol 23, pp. 223-229.
[22] 鍾崑來,2002,”應用田口式方法於鋼板彎曲成形最佳參數選擇之研究”,國立成功大學造船及船舶機械工程研究所碩士論文。
[23] J.R. Cho, S.J. Moon, Y.H. Moon, S.S.Kang, 2003 , "Finite element investigation on spring-back characteristics in sheet metal U-bending process", Journal of Materials Processing Technology, Vol 141, Issue 1 , pp. 109-116, South Korea.
[24] C.Q. Du, 2004, "Springback control with variable binder force experiments and FEA simulation", AIP Conference proceedings, Vol 712, pp.970-976.
[25] W.M. Chan, H.I. Chew, H.P. Lee, B.T. Cheok, 2004, "Finite element analysis of spring-back of V-bending sheet metal forming processes", Journal of Materials Processing Technology, Vol 148, pp.15-24.
[26] 柯盛夫,2004,”板件彎曲成形回彈機制之研究”,台灣大學機械工程研究所碩士論文。
[27] I. Ragai, D. Lazim and J.A. Nemes, 2005, "Anisotropy and springback in draw-bending of stainless steel 410: experimental and numerical study", Journal of Materials Processing Technology, Vol 166, Issue 1, pp. 116-127.
[28] M.L. Garcia-Romeu, J. Ciurana, I. Ferrer, 2007, "Springback Determination of Sheet Metals in an Air Bending Process based on an Experimental Work", Journal of Materials Processing Technology, Vol 191, pp. 174–177.
[29] 洪逸祥,2011,”金屬薄板V型微彎曲成形之研究”,北台灣科學技術學院機電整合研究所碩士論文。
[30] 陳姵纹,2012,”鈑金彎曲成形模具形狀最佳化設計之研究”,南開科技大學精密模具與機械產業研發碩士專班碩士論文。
[31] 陳昭帆,2015,”板金打樣之折彎順序規劃與沖頭選取”,國立台灣科技大學自動化及控制研究所碩士論文。
[32] 劉福興、鄭偉盛,2002,沖壓模設計,新文京開發出板有限公司。
[33] 許源泉,2004,塑性加工學,全華科技圖書股份有限公司。
[34] Etienne Taupin, Jochen Breitling, Wei-Tsu Wu, Taylan Altan, 1996, "Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments", Journal of Materials Processing Technology, Vol 59, pp. 68-78.
[35] A.M. Freudenthal, 1950, The Inelastic Behaviour of Engineering Materials and Structure, John Wiley.
[36] 余俊德,2002,”附V型壓環之精密剪斷有限元素分析”,國立交通大學機械工程研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊