跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉振元
研究生(外文):Chen-Yuan Liu
論文名稱:利潤共享及共同投資下整合供應鏈之一般化模式
論文名稱(外文):A generalized model for a coordinating supply chain with deteriorating items and revenue sharing
指導教授:戴忠淵戴忠淵引用關係
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:19
中文關鍵詞:供應鏈整合保存技術投資退化性產品
外文關鍵詞:Integrated supply chainPreservation technology investmentdeteriorating items
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在Zhang et al. [23]的存貨模式中,需求率的定義為價格的線性函數;而且他們也以一階泰勒展開式的近似方式證明整合供應鏈下,合作雙方的利潤函數為投資保存成本的凹函數。因此,在本研究中,我們首先以嚴謹的方式證明合作雙方的利潤函數的確為投資保存成本的凹函數。此外,我們也將Zhang等學者的存貨模式延伸至更為一般化的需求函數。因此本研究不僅使得Zhang等學者的存貨模式更為完備,也更為一般化。

In this thesis, we accomplish the proof of Zhang et al. [1] to show the strict concavity of total profit of the whole supply chain with respect to preservation technology investment without taylor approximation. We also generalize the model of Zhang et al. [1] to a broader class of market demand functions. Finally, a numerical example and sensitivity analysis are given to illustrate the proposed model, which is followed by concluding remarks.

目 錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
1 緒論 1
1.1 研究動機 1
1.2 研究方法 2
2 模式推廣 4
2.1 Πsc(p, u)爲p的單峰函數 5
2.2 Πsc(p, u)爲 u 的嚴格凹函數 6
3 數值範例 12
4 結論 16
參考文獻 17


[1]Abad, P.L., 1996. Optimal pricing and lot-sizing under conditions of perisha-bility and partial backordering. Management Science 42, 1093–1104.
[2]Bakker, M., Riezebos, J., Teunter, R.H., 2012. Review of inventory systems with deterioration since 2001. European Journal of Operational Research 221, 275 – 284.
[3]Chakrabarty, T., Giri, B.C., Chaudhuri, K.S., 1998. An eoq model for items with weibull distribution deterioration, shortages and trended demand: an ex-tension of philip’s model. Computers & Operations Research 25, 649–657.
[4]Chen, Y.R., Dye, C.Y., 2011. Application of particle swarm optimization for solving deteriorating inventory model with fluctuating demand and controllable deterioration rate. International Journal of Systems Science .
[5]Covert, R.P., Philip, G.C., 1973. An eoq model with weibull distribution dete-rioration. AIIE Transactions 5, 323–326.
[6]Dye, C.Y., 2013. The e˙ect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega 41, 872–880.
[7]Dye, C.Y., Hsieh, T.P., 2012. A particle swarm optimization for solving lot-sizing problem with fluctuating demand and preservation technology cost under trade credit. Journal of Global Optimization Article in Press.
[8]Geetha, K.V., Uthayakumar, R., 2010. Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics 233, 2492–2505.
[9]Ghare, P.M., Schrader, G.H., 1963. A model for an exponentially decaying inventory. Journal of Industrial Engineering 14, 238–243.
[10]Goyal, S., Giri, B., 2001. Recent trends in modeling of deteriorating inventory. European Journal of Operational Research 134, 1–16.
[11]Hsieh, T.P., Dye, C.Y., 2013. A production–inventory model incorporating the e˙ect of preservation technology investment when demand is fluctuating with time. Journal of Computational and Applied Mathematics 239, 25 – 36.
[12]Hsu, P., Wee, H., Teng, H., 2010. Preservation technology investment for dete-riorating inventory. International Journal of Production Economics 124, 388 –394.
[13]Li, R., Lan, H., Mawhinney, J.R., 2010. A review on deteriorating inventory study. Journal of Service Science and Management 3, 117–129.
[14]Misra, R.B., 1975. Optimum production lot size model for a system with dete-riorating inventory. International Journal of Production Research 13, 495–505.
[15]Mukhopadhyay, S., Mukherjee, R.N., Chaudhuri, K.S., 2004. Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineer-ing 47, 339–0349.
[16]Ouyang, L.Y., Wu, K.S., Yang, C.T., 2006. A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering 51, 637–651.
[17]Philip, G.C., 1974. A generalized eoq model for items with weibull distribution deterioration. AIIE Transactions 6, 159–162.
[18]Sarkar, B., 2012. An eoq model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling 55, 367 – 377.
[19]Shah, N.H., Soni, H.N., Patel, K.A., 2013. Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega 41, 421 – 430. Management science and environmental issues.
[20]Tadikamalla, P.R., 1978. An eoq inventory model for items with gamma distri-bution. AIIE Transactions 10, 100–103.
[21]Wee, H.M., 1997. A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control 8, 494–499.
[22]Wu, K.S., Ouyang, L.Y., Yang, C.T., 2006. An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics 101, 369 –384.
[23]Zhang, J., Liu, G., Zhang, Q., Bai, Z., 2015. Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract. Omega 56, 37 – 49.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊