跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張博翔
研究生(外文):CHANG,BO‐HSIANG
論文名稱:UV壓印技術開發之金屬網格應用 於OLED照明
論文名稱(外文):UV assisted soft imprinting of metal mesh based transparent electrodes for OLED lighting
指導教授:盧燈茂盧燈茂引用關係莊承鑫莊承鑫引用關係
指導教授(外文):LU,DENG-MAWCHUANG,CHENG-HSIN
口試委員:李永春施文彬莊承鑫
口試委員(外文):LEE,YUNG-CHUNSHIH,WEN-PINCHUANG,CHENG-HSIN
口試日期:2016-07-15
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:滾對板轉印技術透明導電薄膜有機發光二極體
外文關鍵詞:Roll-to-sheetTransparent conductive electrodeOrganic Light-Emitting Diode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
近年來OLED的發展不只在顯示器上如火如荼,在照明應用上也越來越成熟,一般照明、商業照明、車尾燈上皆有優異表現,其具有柔和的面光源,因此無眩光之問題,且光譜更接近自然光,可撓特性更增加設計的彈性與想像力,種種特性使OLED與LED做出差異化,其中氧化銦錫(ITO)為OLED陽極之關鍵材料,但此材料所使用之稀有金屬「銦」近年來使用量大增而且礦場由少數國家控制,造成銦金屬銳減且取得不易,導致透明導電薄膜的成本逐年上升,因此近年來各大企業已投入資源研發取代ITO材料,基於導電率及成本的要求,以金屬網格(Metal Mesh)製程最受矚目。本研究以UV壓印方式進行金屬網格之製作,首先利用黃光微影製程製作具線寬5 μm及深度5 μm之光阻結構於矽晶圓上作為母模,再以高分子材料(Polydimethylsiloxane, PDMS)灌注於母模內翻印出具溝槽結構之軟性模仁(Soft Mold),接著以滾對板機臺設備(Roll-to-sheet, R2S)之UV紫外光固化轉印溝槽結構於玻璃(glass)基材上,最後利用刮塗系統將導電材料填入溝槽結構後進行烘烤,製作出線寬5μm之金屬網格於玻璃基材上,並以此方式製作出不同線距之金屬網格,分別為250μm、180μm與150μm,經由量測分析可得知線距從250μm縮至150μm時再穿透率變化上差異不大,但霧度有上升之趨勢,而片電阻有較明顯之下降變化。本研究亦將UV壓印金屬網格應用於OLED照明,並比較金屬網格上之導電高分子厚度與發光效率關係,最後測得之最佳PEDOT:PSS厚度為500nm,此元件啟亮電壓為5V在電壓加至10V時其亮度可達3000cd/〖mm〗^2之發光效率。
Transparent conductive electrodes (TCE) possessing a combination of high optical transmission and good electrical conductivity find applications in numerous optoelectronic devices. In this study, we propose the low cost fabrication of a fine metal mesh structure on rigid (glass) substrates as a promising and feasible approach for fulfilling large size TCE requirements. We have utilized a roll-to-sheet assisted ultraviolet imprinting protocol to transfer micro trench structures using a flexible PDMS stamp. The conductive silver ink is filled into the micro trench structures by doctor blade. We use this process fabrication different spacing Metal Mesh on glass substrates. When the mesh spacing is reduced from 250µm to 150µm, the transmittance shows no significant change while the haze increase and the sheet resistance decrease.
The metal mesh having a pitch of 250µm has been utilized as a transparent conductive electrode (anode) for OLED applications and can achieve luminescence of 3000cd/〖mm〗^2 at an applied voltage 10V.

摘要 i
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 6
1.3.1 透明導電薄膜 6
1.3.2 金屬網格應用於OLED Lighting 11
1.3.3 金屬銀線製程 12
1.4 研究方法 20
1.5 研究目標 21
第二章 原理 23
2.1 OLED基本原理 23
2.1 OLED陽極- ITO透明導電膜 24
第三章 實驗材料、量測設備與製作流程 25
3.1 實驗材料 25
3.2 實驗設備 30
3.3 滾對板機臺設備介紹 38
3.3.1 紫外光滾印系統 40
3.3.2 刮塗系統 42
3.4 金屬網格之製作流程與量測方法 43
3.4.1 軟性模仁製作 43
3.4.2 導電銀漿之刮塗製程 46
3.4.3 進膠量之檢測 47
3.4.4 片電阻檢測方法 47
3.4.5 ASTM D1003霧度量測規範簡介 48
3.5 金屬網格OLED之製作流程與量測方法 49
3.5.1 金屬網格OLED各層範圍定義 50
3.5.2 PEDOT:PSS膜厚量測方法 51
3.5.3 OLED有機層製程 52
3.5.4 OLED陰極製程 54
3.5.5 OLED效率量測 55
第四章 實驗結果與討論 56
4.1 軟性模仁與UV轉印 56
4.1.1 軟性模仁製作方式 56
4.1.2 線距250μm之金屬網格製做結果 58
4.1.3 線距180μm之金屬網格製做結果 59
4.1.4 線距150μm之金屬網格製做結果 61
4.1.5 金屬網格線距對光學性質與電性關係之趨勢 63
4.1.6 UV轉印後之密著性測試 63
4.2 金屬網格製作成果與OLED照明元件製作 64
4.2.1 電洞注入層圖型定義與方法 64
4.2.2 金屬網格OLED照明元件製作 66
第五章 結論與未來展望 68
5.1 結論 68
5.2 未來展望 70
參考文獻 71
作者簡介 75


[1]光電科技工業協會,“次世代新光源OLED照明”,光連雙月刊,(2012).
[2]郭子菱,“日韓歐美大廠競逐 OLED照明2015年起飛”, 新電子科技雜誌 Micro-Electronics Magazine, (2012).
[3]蕭暐翰、邱俊毅、邱國展,“透明導電薄膜技術趨勢與應用(上)”, 工業材料雜誌-光電特刊, (2014).
[4]F.C. Krebs, M. Jorgensen, K. Norrman, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration,” Solar Energy Materials and Solar Cells, 93 (2009), pp. 422–441.
[5]J.-S. Yu, I. Kim, J.-S. Kim, J. Jo, T.T. Larsen-Olsen, R.R. Sondergaard, M. Hosel, D. Angmo, M. Jorgensen, F.C. Krebs, “Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes,” Nanoscale, 4 (2012), pp. 6032–6040.
[6]J.W. Lim, D.-Y. Cho, J.-H. Kim, S.-I. Na, H.-K. Kim, “Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells, ”Solar Energy Materials and Solar Cells, 107 (2012), pp. 348–354
[7]S.-I. Na, Y.-J. Noh, S.-Y. Son, T.-W. Kim, S.-S. Kim, S. Lee, H.-I. Joh, “Efficient organic solar cells with solution-processed carbon nanosheets as trasparent electrodes,” Applied Physics Letters, 102 (2013), pp. 043304-1–043304-5.
[8]S.I. Na, J.-S. Lee, Y.-J. Noh, T.-W. Kim, S.-S. Kim, H.-I. Joh, S. Lee, “Efficient ITO-free polymer solar cells with pitch-converted carbon nanosheets as novel solution-processable transparent electrodes, ”Solar Energy Materials and Solar Cells, 115 (2013), pp. 1–6.
[9]J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, S.-I. Na, “Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics,” ACS Applied Materials and Interfaces, 4 (2012), pp. 2551–2560.
[10]D.S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Advanced Materials, 23 (2011), pp. 1482–1513.
[11]Jennifer Colegrove, “New Trends in Touch”, Display Marketplace, (2014).
[12]IDTechEx report “Transparent Conductive Films (TCF) 2014-2024: Forecasts, Technologies, Players”, (2013).
[13]M.L. Grilli, I.D. Sarcina, S. Bossi, A. Rinaldi, L. Pilloni, A. Piegari, “Ultrathin and stable Nickel films as transparent conductive electrodes,”Thin Solid Films 594 (2015) 261-265.
[14]J.D. Park, S. Lim, H. Kim, “Patterned silver nanowires nanowires using the gravure printing process for flexible applications ,”Contents lists available at ScienceDirect.
[15]M. Aleksandrova, N. Kurtev, V. Videkov, S. Tzanova, S. Schintke, “Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices,”Microelectronic Engineering 145 (2015) 112-116.
[16]K.W. Park, H.S. Jeong, J.H. Park, G. Deressa, Y.T. Jeong, K.T. Lim, J.H. Park, S.H. Lee, J.S. Kim, “Flexible powder electroluminescent device on silver nanowire electrode,”Journal of Luminescence 165 (2015)
[17]J. Hwang, H.K. Choi, J. Moon, J.-W. Shin, C.W. Joo, J.-H. Han, D.-H. Cho, J.W. Huh, S.-Y. Choi, J.-I. Lee, H.Y. Chu, “Blue fluorescent organic light emitting diodes with multilayered graphene anode,”Materials Research Bulletin 47 (2012) 2796-2799.
[18]F. Laurent M Sam, M.A. Razali, K.D.G. Imalka Jayawardena, C.A. Mills, L.J. Rozanski, M.J. Beliatis, S.R.P. Siva, “Silver grid transparent conducting electrodes for organic light emitting diodes,”Organic Electronics 15 (2014) 3492-3500.
[19]B.-J. Kim, J.-S. Park, Y.-J. Hwang, J.-S Park. “Characteristics of silver meshes coated with carbon nanotubes via spray-coating and electrophoretic deposition for touch screen panels ,”Thin Solid Films 596 (2015) 68-71.
[20]Liangjin Ge, L. Jay Guo, Xudi Wang, Shaojun Fu, “Silver lines electrode patterned by transfer printing,” Microelectronic Engineering 97 (2012) 289–293.
[21]Ken-ichi Nomura, Hirobumi Ushijima, Ryosuke Mitsui, Seiya Takahashi, Shin-ichiro Nakajima, “Screen-offset printing for fine conductive patterns,” Microelectronic Engineering, 123 (2014) 58–61.
[22]Bong Kyun Park, Dongjo Kim, Sunho Jeong, Jooho Moon, Jang Sub Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515 (2007) 7706–7711.
[23]Taik-Min Lee , Jae-Ho Noh, Chung Hwan Kim, Jeongdai Jo, Dong-Soo Kim, “Development of a gravure offset printing system for the printing electrodes of flat panel display,” Thin Solid Films 518 (2010) 3355–3359.
[24]D. Deganello, J.A. Cherry, D.T. Gethin, T.C. Claypole, “Impact of metered ink volume on reel-to-reel flexographic printed conductive networks for enhanced thin film conductivity,” Thin Solid Films, 520 (2012) 2233–2237.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top