跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白嘉聖
研究生(外文):Chia Sheng Pai
論文名稱:Activating Transcription Factor 3 (Atf3) 基因在記憶形成中所扮演的角色
論文名稱(外文):The role of the Activating Transcription Factor 3 (Atf3) in memory formation
指導教授:劉怡均劉怡均引用關係
指導教授(外文):Ingrid Y. Liu
口試委員:陳紀雄林恒
口試委員(外文):Ji Hshiung ChenLin H
口試日期:2015-10-07
學位類別:碩士
校院名稱:慈濟大學
系所名稱:分子生物暨人類遺傳學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:Atf3痕跡恐懼制約
外文關鍵詞:Atf3fear conditioning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在哺乳類轉錄因子中的ATF/CREB家族是一大群含有基本的亮胺酸拉鍊 (basic Leucine zipper, bZip)結構的蛋白所組成。他們可以根據胺基酸序列的相似性被分類成ATF1-ATF6。其中Atf3是一種壓力誘導的基因。在大部分的細胞中,其信使核糖核酸 (mRNA)表現量很低,但是在細胞暴露在壓力訊號之下時,其信使核糖核酸會快速地被壓力誘導且轉錄且表現量會有巨幅的上升。壓力誘導Atf3可以透過許多不同的訊號傳導路徑,例如說p53以及ATF2的訊號。而ATF3本身既是轉錄活化因子 (activator)和轉錄抑制子 (repressor)。當ATF3是同型二具體(homodimer)時,為一個抑制子;然而當ATF3與c-JUN/JunD形成異型二具體 (heterodimer) 時,則已經被證明是轉錄的活化因子。在先前研究當中,發現ATF3在海馬迴有大量表現,然而目前Atf3在記憶形成中,所扮演的功能尚未釐清。為了研究記憶形成中Atf3的基因功能為何,我利用Atf3基因剔除(knockout, KO)小鼠來進行恐懼制約 (fear conditioning)、莫氏水迷宮 (Morris water maze)和旋臂迷宮 (radial arms maze)測試。首先先對Atf3 基因剔除小鼠和野生型 (wildtype)小鼠進行外觀、運動能力以及感官功能進行比較。實驗結果發現Atf3基因剔除小鼠和野生型小鼠無顯著差異。接著我進行了延宕恐懼制約 (Delay fear conditioning, DFC)及痕跡恐懼制約 (Trace fear conditioning, TFC)。實驗結果發現,Atf3基因剔除小鼠在記憶提取中,包含情境測試 (Contextual test)和聲音測試 (Tone test),都表現出比野生型小鼠較為高比例的僵直行為 (Freezing)。為了瞭解ATF3是不是只和壓力誘導的記憶相關,因此我利用了莫氏水迷宮以及旋臂迷宮來當作無壓力的平台來進行測試。其結果為Atf3基因剔除小鼠在無壓力的測試實驗中展示出和野生型小鼠相似的表現。在細胞層次中,我們利用高基染色法 (Golgi staining)並在六十以及一百倍的顯微鏡中計數經由染色呈現的樹突突棘 (dendritic spines)數目。我們發現在Atf3基因剔除小鼠和野生型小鼠在未經訓練的組別 (naïve group)中展現相似的突棘數目。有趣的是在經過痕跡恐懼制約訓練之後,Atf3基因剔除小鼠和野生型小鼠的突棘數目都有顯著性的提高。而Atf3基因剔除小鼠的突棘數目是野生型小鼠的1.67倍之高。這些實驗顯示了,Atf3在抑制壓力誘導的恐懼記憶中扮演專一且重要的角色。而壓力誘導的恐懼記憶是創傷性壓力症候群 (PTSD) 患者的患病主要原因之一。因此未來可藉著抑制ATF3的表現以治療PTSD症狀的方法。
The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine Zipper proteins (bZip). These proteins can be grouped into six subgroups according to their amino acid similarity: ATF1 to ATF6. Atf3 (Activating Transcription Factor 3) is a stress inducible gene. Its mRNA level is low in most cells, but greatly increased upon the exposure of cells to stress signals and its induction is immediate and transient. Stress signals induce Atf3 through complex mechanisms involving multiple pathways, such as the p53 and ATF2 signaling. ATF3 serves as both transcription activator and repressor. ATF3 homodimer is a transcriptional repressor; however, heterodimeric complex of ATF3 with c-Jun (or JunD) has been demonstrated to function as a transcriptional activator. In previous studies showed, the ATF3 is highly expression in the hippocampus. However the Atf3 gene function in learning and memory is not clear yet. In order to investigate the Atf3 gene function in memory formation, I used the Atf3 knockout (KO) mice to test them on fear conditioning, Morris water maze (MWM) and radial arms maze (RAM). First I compared the Atf3 KO mice with their wildtype (WT) littermates in morphology, locomotor activity and sensory function. Results showed no significant difference between the Atf3 KO mice and the WT mice. Next I performed Fear conditioning tasks, including Delay Fear Conditioning (DFC) and Trace Fear Conditioning (TFC). The Atf3 KO mice exhibited higher freezing percentage in memory retrieval, including contextual and tone test than WT mice. To understand whether the ATF3 is specifically associated with performance of stress-induced memory, I used the MWM and RAM as non-stressful models to test the Atf3 KO. The Atf3 KO mice displayed similar performance as WT mice on non-stress memory task. And at the cellular level, I used the Golgi staining to measure the numbers of spine at 60X and 100 X magnifications. I found that the dendritic spines of WT and Atf3 KO mice are similar in naïve group. Interestingly, the spine numbers of WT and Atf3 KO mice are significant increase. And the most important thing is the spine number of Atf3 KO mice is increasing 1.67 fold than WT littermates. These results indicated the Atf3 played a specific and important role in suppressing stress-induced fear memory. And the highly stressful fear memory is similar with the major risk of PTSD (post-traumatic stress disorder). Thus, if the ATF3 expression were knockdown by shRNA, may be able to reduce the symptoms of PTSD. It is also a great research direction to study.
Abstract…………………………………………………………… ……………………………….I
中文摘要…………………………………………………………………………………...…………II
Index………………………………………………………………………………….. ……………..0
1. Introduction…………………………………………………………………… ………………1
a. The ATF/CREB family………………….………..…………….……………… …………….1
b. The Atf3 gene and structure of the ATF3 protein………………...………………. ………….1
c. Induction and regulation of the Atf3………………...…………………………… …….…….2
d. Stages of memory formation…………………………………….…………………. ………..3
e. The Hippocampus and Hippocampal-dependent Learning/Memory………………… .……..4
f. Aim of this thesis……………………………………………………………………… ……..7
2. Experimental design…………...……….………………………………………… ..……..8
3. Methods and materials……………………………………………………..……9
a. Animals……………………………………………………………………………..…...…….9
b. Genotyping of the Atf3 knockout mice…………………………………………….………..…9
c. Locomotor activity test……………………………………………………………………...….9
d. Sensory function test………………………………………………………………...…...…….9
e. Fear conditioning…………………………………………………………………… ………10
f. Morris water maze……………………………………………………………………..……...11
g. Radial arms maze…………………………………………………………………..…………11
h. RNA extraction………………………………………………………………………..…...…12
i. Real-time Quantitative PCR………………………………………………………….....…….13
j. Golgi staining……………………………………………………...……………………...…...14
k. Statistics………………………………………………………………………………...……..15
4. Results……………………………..……………………….…………….………16
5. Discussion…………………………………………………….…………….……20
6. Figures…………………………………………………………………..…….…24
7. Table..……………………………………………………………………… .…..55
8. References…………………………………………………………… ……...….56

1.W. C. Hai T, Marsee DK, Allen AE, Sivaprasad U, ATF3 and stress responses. Gene Expr. 7, 321-335 (1999).
2.S. R. R. JC., ER stress-induced cell death mechanisms. Biochim Biophys Acta. 12, 3460-3470. (2013)doi: 10.1016/j.bbamcr.2013.06.028.).
3.T. C. Tsonwin Hai, Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proceedings of the National Academy of Sciences 88 (9), 3720-3724 (1991).
4.L. G. Chen BP, Whelan J, Hai T., ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 269, 15819-15826. (1994).
5.T. W. Hai, F. Liu, W. J. Coukos, M. R. Green, Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3, 2083-2090 (1989); published online EpubDec (
6.K. Miyazaki, Inoue, S.,Yamada, K., Watanabe, M.,Liu,Q., Watanabe,T., Adachi, M.T.,Tanaka, Y., and Kitajima, S., Differential usage of alternate promoters of the human stress response gene ATF3 instress response and cancer cells. Nucleic AcidsRes. 37, 1438–1451 (2009).
7.B. P. Chen, G. Liang, J. Whelan, T. Hai, ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269, 15819-15826 (1994); published online EpubJun 3 (
8.M. R. Thompson, Xu,D., and Williams, B.R., ATF3 transcription factor and its emerging rolesin immunity and cancer. J. Mol.Med. 87, 1053-1060 (2009).
9.J. C. Hsu, Bravo, R., and Taub, R. , Interactions among LRF-1, JunB, c-Jun, and c-Fos define a reg- ulatory program in the G1 phase of liver regeneration. Mol. Cell. Biol. 12, 4654-4665 (1992).
10.H. M. Hai T, The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene. 273, 1-11 (2001).
11.T. Hai, T. Curran, Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 88, 3720-3724 (1991); published online EpubMay 1 (
12.D. Lu, The Ohio State University, (2006).
13.N. N. St Germain C, Ma L, Garbuio K, Hai T, Dimitroulakos J., Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3. Neoplasia 12, 527-538 (2010).
14.C. G. Chun Zhanga, Junya Kawauchia, Yoshinori Hashimotoa, Nobuo Tsuchidab, Shigetaka Kitajima, Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochemical and Biophysical Research Communications 297, 1302-1310 (2002).
15.D. L. M. a. J. L. Goldberg, Multiple Transcription Factor Families Regulate Axon Growth and Regenration. Dev Neurobiol. 71, 1186-1211 (2011)10.1002/dneu.20934.).
16.A. Brooks, Guo Y, Singh M, McCracken J, Xuan YT, Srivastava S, Bolli R, Bhatnagar A., Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning. J Mol Cell Cardiol 76, 138-147 (2014).
17.J. Rao, Qian X, Li G, Pan X, Zhang C, Zhang F, Zhai Y, Wang X, Lu L., ATF3-mediated NRF2/HO-1 signaling regulates TLR4 innate immune responses in mouse liver ischemia/reperfusion injury. Am J Transplant 15, 76-87 (2015).
18.D. Sandnes, Müller KM, Akhtar K, Johansen EJ, Christoffersen T, Thoresen GH., Induction of LRF-1/ATF3 by vasopressin in hepatocytes: role of MAP kinases. Cell Physiol Biochem 25, 523-532 (2010).
19.J. Kim, Hwang JY, Lee DY, Song EH, Park KJ, Kim GH, Jeong EA, Lee YJ, Go MJ, Kim DJ, Lee SS, Kim BJ, Song J, Roh GS, Gao B, Kim WH., Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo. J Biol Chem 289, 27065-27079 (2014).
20.B. Chen, Wolfgang CD, Hai T., Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol. 16, 1157-1168 (1996).
21.C. W. A. E. A. G. L. H. V. T. Hai, ATF3: A transcription repressor involved in stress responses. FASEB Journal 11, (1997).
22.C. D. W. Tsonwin Hai, Derek .k Marsee, Amy E. Allen, and Umasundari Sivaprasad, ATF3 and stress responses. Gene Expr 7, 321-335 (1999).
23.K. Pernhorst, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, Schoch S, Becker AJ, Grote A., TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 22, 675-678 (2013).
24.H. S. Takumi Yoshida, Michihiro Mitobe, Ken Tsuchiya, Satsuki Shirota, Sayoko Nishimura, Shunji Shiohira, Hiroshi Ito, Kiyoshi Nobori, Steven R. Gullans, Takashi Akiba and Kosaku Nitta, ATF3 Protects against Renal Ischemia-Reperfusion Injury. JASN 19, 217-224 (2008).
25.E. Harper, Alvares SM, Carter WG., Wounding activates p38 map kinase and activation transcription factor 3 in leading keratinocytes. J Cell Sci 1, 3471-3485 (2005).
26.K. E. Tsujino H, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K, Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci. 15, 170-182 (2000).
27.W. Z. Wu ZY, Sun SJ, Yuan J, Jiao SC., Activating transcription factor 3 promotes colon cancer metastasis. Tumour Biol 35, 8329-8334 (2014).
28.C. D. Allan Jones, Christof Koch, David Poston, Jane Roskams, John Phillips. (2014).
29.J. A. A. Koivisto E, Moilanen AM, Tokola H, Aro J, Pennanen H, Säkkinen H, Kaikkonen L, Ruskoaho H, Rysä J., Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes. PLoS One 9(8), (2014); published online Epub2014 Aug 19 (10.1371).
30.I. K. Kitamura T, Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol Brain., (2014).
31.K. M. Isacsson A, Dahlin LB, Induction of activating transcription factor 3 (ATF3) by peripheral nerve compression. Scand J Plast Reconstr Surg Hand Surg. 39, 65-72 (2005).
32.K. H. Takeda M, Takamiya A, Yoshida A, Kiyama H, Targeted Injury-specific expression of activating transcription factor-3 in retinal ganglion cells and its colocalized expression with phosphorylated c-Jun. Invest Ophthalmol Vis Sci 41, 2412-2421 (2000).
33.W. C. Chen BP, Hai T, Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol. 16, 1157-1168 (1996).
34.D. M. Francis JS, During MJ, Over expression of ATF-3 protects rat hippocampal neurons from in vivo injection of kainic acid. Brain Res Mol Brain Res. 124, 199-203 (2004).
35.H.-I. K. Hunt D, Mason MR, Coffin RS, Lieberman AR, Winterbottom J, Anderson PN., ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter. BMC Neurosci. 5, (2004).
36.M. C. d. W. Nils Z. Borgesius, Ingrid van der Pluijm, Azar Omrani, Gerben C. M. Zondag, Gijsbertus T. J. van der Horst, David W. Melton, Jan H. J. Hoeijmakers, Dick Jaarsma, and Ype Elgersma, Accelerated Age-Related Cognitive Decline and Neurodegeneration, Caused by Deficient DNA Repair. The Journal of Neuroscience 31, 12543-12553 (2011).
37.B. B. Zhang SJ, Lau D, Hayer S, Dick O, Schwaninger M, Veltkamp R, Zou M, Weiss U, Bading H., A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31, 4978-4990 (2011)10.1523/JNEUROSCI.2672-10.2011.).
38.H. K. Campbell G, Winterbottom J, Grenningloh G, Lieberman AR, Anderson PN., Upregulation of activating transcription factor 3 (ATF3) by intrinsic CNS neurons regenerating axons into peripheral nerve grafts. Exp Neurol. 192, 340-347 (2005).
39.D. L. Lindwall C, Lundborg G, Kanje M, Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Mol Cell Neurosci. 27, 267-279 (2004).
40.T. A. a. K. M. Lattal, Molecular mechanisms of memory acquisition, consolidation and retrieva. Current Opinion in Neurobiology 180–187 (2001).
41.P. V. N. Ted Abel, Mark Barad, Thomas AS Deuel, Eric R Kandel, Roussoudan Bourtchouladze, Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615-626 (1997).
42.E. R. Kandel, The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science 294, 1030-1038 (2001).
43.A. C.M., Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89, 121-145 (2009)10.1152).
44.D. H. Frankland PW, Takahashi E, Suzuki A, Kida S, Silva AJ., Stability of recent and remote contextual fear memory. Learn Mem 13, 451-457 (2006).
45.J. S. Suzuki A, Frankland PW, Masushige S, Silva AJ, Kida S., Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci. 24, 4787-4795 (2004).
46.M. M. A. CM., Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521-525 (2002).
47.C. J. Lee SH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Lee SH, Kim H, Kaang BK., Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253-1256. (2008)10.1126).
48.M. Y. Li Y, Gage FH., Development of neural circuits in the adult hippocampus. Curr top dev Biol 87, 149-174 (2009).
49.S. Corkin, What's new with the amnesic patient H.M.? Nat Rev Neurosci. 3, 153-160 (2002).
50.T. Abel, Lattal, K.M., Molecular mechanisms of memory acquisition, consolidation and retrieval. Current Opinion in Neurobiology 11, 180-187 (2001).
51.R. J. L. KM., Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning. . PLoS One 6, e15982 (2011).
52.B. M. Holland PC, Hippocampus and context in classical conditioning. Current Opinion in Neurobiology 9, 195-202 (1999).
53.S. Maren, Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats. Eur J Neurosci. 28, 1661-1666 (2008).
54.J. Quinn, Oommen, SS., Morrison, GE., Fanselow, MS., Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus 12, 495-504 (2002).
55.W. D. Bangasser DA, Santollo J, Shors TJ, Trace conditioning and the hippocampus: the importance of contiguity. . The Journal of Neuroscience. , 8702-8706 (2006).
56.S. M. Burman MA, Gewirtz JC. , Dissociable effects of hippocampus lesions on expression of fear and trace fear conditioning memories in rats. Hippocampus. Hippocampus. 16, 103-113 (2006).
57.B. H. McEchron MD, Tseng W, Weiss C, Disterhoft JF. , Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus. 8, 638-646 (1998).
58.M. Q. Quinn JJ, Tinsley MR, Koch C, Fanselow MS. , Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. . Learning & Memory. 15, 368-372 (2008).
59.T. M. C. GD., Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats. Behavioural Brain Research. 168, 289-298 (2006).
60.C. Y. Huang C, Liang K, Thompson RF, Liu IY. , Extra-cellular signal-regulated kinase 1/2 (ERK1/2) activated in the hippocampal CA1 neurons is critical for retrieval of auditory trace fear memory. Brain Research. 1326, 143-151 (2010).
61.B. M. Peters M, Catapano R, Zhang X, Tully T, Bourtchouladze R. , RNA interference in hippocampus demonstrates opposing roles for CREB and PP1alpha in contextual and temporal long-term memory. Genes, Brain, and Behavior. 8, 320–329. (2009).
62.P. R. Wang R, Hsu P, Wang W, Huang H, Liu IY. , In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning. Hippocampus, (2013).
63.B. P. Beeman CL, Pierson JL, Quinn JJ., Hippocampus and medial prefrontal cortex contributions to trace and contextual fear memory expression over time. Learning & Memory. 20, 336-343 (2013).
64.G. A. Guimarãis M, Cruz A, Guyon N, Moita MA., Time determines the neural circuit underlying associative fear learning. Front Behav Neurosci. 5, 89 (2011).
65.C. G. Trivedi MA, Lesions of the ventral hippocampus, but not the dorsal hippocampus, impair conditioned fear expression and inhibitory avoidance on the elevated T-maze. Neurobiol Learn Mem. 81, 172-184 (2004).
66.C. J. Cox D, Ree F, Otto T., Time course of dorsal and ventral hippocampal involvement in the expression of trace fear conditioning. Neurobiology of Learning & Memory., (2013).
67.S. C. Eichenbaum H, Morris RG., Hippocampal representation in place learning. J Neurosci 10, 3531-3542 (1990).
68.S. Logue, Paylor R, Wehner JM., Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behaviour Neuroscience 111, 104-113 (1997).
69.G. Riedel, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RG., Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Rev Neurosci. 2, 898-905 (1999).
70.D. D. P. D'Hooge R, Applications of the Morris water maze in the study of learning and memory. Brain Res Mol Brain Res. 36, 60-90 (2001).
71.D. S. Olton, Samuelson, Robert J., Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology : Animal Behavior Processes 2, 97-116 (1976).
72.L. L. E Tarragon, F Ros-Bernal, J Yuste, V Ortiz-Cullera, E Martin, E Schenker, F Aujard, R Bordet, J Richardson, MT Herrero, The Radial Arm Maze (RAM) for the evaluation of working and reference memory deficits in the diurnal rodent Octodon degus. Proceedings of Measuring Behavior, (2012).
73.L. K. a. S. TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408 (2001).
74.L. B. EMILIE MIKESˇOVÁ, IVA SAKMARYOVÁ,IVA TATARKOVÁ, and PAVEL SEEMAN, Quantitative Multiplex Real-Time PCR for Detection of PLP1 Gene Duplications in Pelizaeus–Merzbacher Patients. GENETIC TESTING 10, 215-220 (2006).
75.F. N. Costa RM, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ., Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526-530 (2002).
76.A. Y. Y. halev, Rachel; Alexander C. McFarlane International handbook of human response to trauma. . (2000).
77.U. D. o. V. Affairs.
78.A. J.-W. Joseph Zohar, Viki Myers, and Leah Fostic Post-Traumatic stress disorder: Facts and Fiction. Current opinion in psychiatry 21, 70-e70a (2008)10.1097/YCO.0b013e3282f269ee).
79.N. R. Carlson, Physiology of Behavior (9 ed.). (Pearson Education, Inc., 2007).
80.R. S. Jatzko A, Schmitt A, Gaser C, Demirakca T, Weber-Fahr W, Wessa M, Magnotta V, Braus DF, Hippocampal volume in chronic posttraumatic stress disorder (PTSD): MRI study using two different evaluation methods. Journal of Affective Disorders 94, 121-126 (2006).
81.R. K. Skelton K, Norrholm SD, Jovanovic T, Bradley-Davino B, PTSD and gene variants: New pathways and new thinking. Neuropharmacology 62, 628-637 (2012).
82.K Cambona, C Veneroa, V Berezinb, E Bockb, C Sandia, Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience 122, 183-191 (2003).
83.J.-W. S. Chien-Chang Chen., Ni-Chun Chung, M.-Y. M. , Sin-Jong Cheng, Ingrid Y. Liu, Retrieval of Context-Associated Memory is Dependent on the Cav3.2 T-Type Calcium Channel. PLoS One, (2012).
84.K. J. Taketani K, Tanaka-Okamoto M, Ishizaki H, Tanaka Y, Sakai T, Miyoshi J, Maehara Y, Kitajima S., Key role of ATF3 in p53-dependent DR5 induction upon DNA damage of human colon cancer cells. oncogene 31, 2210-2221 (2011).
85.N. A. Tanaka Y, Morioka MS, Inoue S, Tamamori-Adachi M, Yamada K, Taketani K, Kawauchi J, Tanaka-Okamoto M, Miyoshi J, Tanaka H, Kitajima S., Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway. PLoS One 6, e26848 (2011).
86.W. S. Jiang HY, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC., Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 24, 1365-1377 (2004).
87.M. Lu, Lawrence, D. A., Marsters, S., Acosta-Alvear, D., Kimmig, P., Mendez, A. S., Paton, A. W., Paton, J. C., Walter, P., Ashkenazi, A., Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. . Science
345, 98-101 (2014).
88.a. E.-D. W. S. Crowder R.N., Caspase-8 regulation of TRAIL-mediated cell death. Exp Oncol 34, 160-164 (2012).
89.B. S. Fernando P, Megeney LA., Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19, 1671-1673 (2005).
90.B. S. Dash PK, Moore AN., Caspase activity plays an essential role in long-term memory. Neuroreport 11, 2811-2816 (2000).
91.E. D. S. Shikha Snigdha , G. Aleph Prieto, Carl W. Cotman, Caspase-3 activation as a bifurcation point between plasticity and cell death. Neuroscience Bulletin 28, 14-24 (2012).
92.K. R. S. Stephan L. Brown, Girish Rachakonda, Soumya Sasi, and Michael L. Freeman, Activating Transcription Factor 3 Is a Novel Repressor of the Nuclear Factor Erythroid-Derived 2–Related Factor 2 (Nrf2)–Regulated Stress Pathway. Cancer Res 68, 364 (2008).
93.A. R. a. Maryam Sardaria, n, Fariba Khodagholib, Hippocampal signaling pathways are involved in stress-induced impairment of memory formation in rats. Brain research, 54-63 (2015).
94.A. J. Zhu M, Zhang Y, Perez E, Spangler EL, Becker KG, Rapp PR., Age-related brain expression and regulation of the chemokine CCL4/MIP-1β in APP/PS1 double-transgenic mice. J Neuropathol Exp Neurol. 73, 362-374 (2014).
95.Lisa K. Felzien, , Joe T. McDonald, Sheena M. Gleason, Nancy E.J. Berman, Robert M. Klein, Increased chemokine gene expression during aging in the murine brain. Brain research 890, 137-146 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文