跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭逸稘
研究生(外文):PENG,YI-CHI
論文名稱:探討營養補充品對術後傷口的作用及急性炎症反應之調節
論文名稱(外文):Effects of Nutritional Supplements on Surgical Wound and Regulation of Acute Inflammatory Response
指導教授:李茹萍
指導教授(外文):LEE,RU-PING
口試委員:邱艷芬楊福麟怡懋蘇米李崇仁
口試委員(外文):CHAO,YANN-FENYANG.FWU-LINYI,MAUN,SU-BEQCHUNG-JEN
口試日期:2016-07-12
學位類別:博士
校院名稱:慈濟大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:魚油脂肪乳劑傷口癒合多元不飽和脂肪酸介白質細胞激素功能性食品淡水蜆河蜆
外文關鍵詞:Fish oillipidWound HealingPUFAInterleukinCytokineFunctional FoodsFreshwater clamCorbicula Fluminea
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:1
在21世紀功能性和醫療食品已成為亞洲國家熱門話題。研究發現魚油中富含Omega-3多元不飽和脂肪酸,其中EPA和DHA能阻斷體內發炎反應和調節免疫的作用。因此本研究第一階段採清醒大鼠傷口模式,模擬外科加護病房病患接受富含魚油成分新型脂肪乳劑(SMOF)注射,密集評估營養補充劑對急性炎症反應及傷口癒合之各項指標之成效。研究採動物實驗法將大鼠分為二組,模擬外科手術方式於背部表面上創建全層皮膚傷口模式。術後持續靜脈注射SMOF 1毫克/公斤或生理鹽水72小時,在數個時間點監測血液及生化指標,並分析皮膚傷口的病理組織切片。研究結果發現在炎症反應指標方面WBC、TNF-α及IL10兩組間達顯著差異,病理組織方面,補充SMOF組的動物在手術後傷口肉芽組織增生及膠原蛋白沉積較高於對照組,且傷口組織表淺和深部區域皆有較高數量的血管形成。本研究結果呈現使用SMOF營養補充劑有促進傷口癒合的成效。
淡水蜆(Freshwater Clam)是亞洲的廣泛食用貝類,傳統上民眾使用此類保健食品以改善健康及營養狀況。蜆萃取物(FCE)具有抗炎活性,目前已發展為輔助治療劑,在預防及治療炎症相關疾病已有許多文獻發表,然而對於傷口癒合相關效益研究卻十分缺乏。因此本研究第二階段,將探討蜆萃取物對術後炎症反應及傷口癒合的影響。實驗中於大鼠背部表面建立全層皮膚傷口,提供FCE 20毫克/公斤或1 ml生理鹽水,每日兩次經由口腔灌食。術前及術後密切監測血液、生化檢查及傷口面積,在14天後收集皮膚病理組織切片。研究結果顯示FCE組TNF-α、IL-6和WBC計數較低於對照組,但未達顯著差異;血液生化學方面,不論在GOT、GPT、CPK、LDH、BUN及CRE方面,FCE組皆略低於生理食鹽水組但未達顯著差,因此蜆萃取物在肝功能及肌肉損傷可能具有保護作用,對腎功能未造成損傷現象。在病理組織分析方面,FCE對大鼠的皮膚傷口癒合結果兩組間於第14天達顯著差異,補充FCE的動物在手術後肉芽組織增生及膠原蛋白沉積較對照組增加,進一步分析傷口組織,發現在損傷後14天有補充FCE組在傷口組織表淺和深部區域的皆有較高數量的血管形成。本研究是首次探討FCE對炎症細胞因子產生生理變化及傷口癒合過程的影響,這像研究結果蜆萃取物影響局部炎症介質但未達顯著差異,但有促進調節傷口癒合過程的能力。
研究結果發現不論使用SMOF或 FCE營養補充劑,皆對於傷口癒合有初步成效。然而在急性炎症反應方面,營養補充劑SMOF對於血液白血球、炎症反應之變化與生理食鹽水組達顯著差異,而FCE則影響到急性炎症反應過程。
In the 21st Century, functional and medical foods for health and disease prevention has been a hot topic in Asian country. The Omega-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish oils generate bioactive lipid mediators that reduce inflammation and leukocyte recruitment in numerous inflammatory disease. The first stage we aimed to evaluate their fish oils generate bioactive lipid mediators effects on wound healing. Eighteen rats were used and divided into 2 groups. The full thickness skin wounds were created on the dorsal surface of the rats. SMOF 1gm/kg or normal saline was supplemented for 72 hours after incision wound was performed. After stopping infusion fluids and given regular drinking and eating. The blood biochemical substances were measured at several time points during the first day after incision. On the day14, cutaneous wound tissues were collected for pathological examination. There is significant difference in the levels of WBC between SMOF and NS group after incision. Pro-inflammatory cytokine TNF-α with NS group was higher than SMOF at 72 hours and significant differences between the two groups. Inhibition of inflammatory cytokine IL-10 with SMOF was higher than in saline group at 48 hours and significant differences between the two groups. Otherwise, the area of wound in SMOF group was smaller than NS group at day14. Histology of repaired incision wounds showed that SMOF group had more fibroblast distribution and collagen fiber organization than NS group.
The Freshwater Clam is a widely-consumed shellfish in Asia, is traditionally used to improve health. Freshwater Clam Extract (FCE) has anti-inflammatory activity and support the possibility for the development of FCE as a health supplement or adjuvant therapeutic agent for either preventing or treating inflammation related diseases. However, there is limited information about FCE effects on wound healing. The second stage we investigated the influence of FCE on the wound healing and inflammatory response in a cutaneous incision model. The full thickness skin wounds were created on the dorsal surface of the rats. FCE 20mg/kg or 1 ml normal saline was applied for oral feeding twice daily for 14 days after incision wound was performed. The blood biochemical substances were measured at several time points during the first day after incision, than measured wound area. On the day14, cutaneous wound tissues were collected for pathological examination. These data indicated that there is no significant difference in the levels of WBC. Otherwise, the area of wound in FCE group was smaller than NS group at day 14. Histology of repaired incision wounds showed that FCE group had more fibroblast distribution and collagen fiber organization than NS group. The NS group had a greater accumulation of inflammatory cells in granulation tissue.
These results suggest that Fish oils generate bioactive lipid mediators and FCE may increase inhibition of inflammatory cytokine production at wound sites and have therapeutic potential to affect cutaneous wound healing.
致謝辭…………………………………………………….……………….……….….I
中文摘要………………………………….………………….…………….…………II
英文摘要…………………………………..………………….……..…….…………Ⅳ
縮寫表………………………………………..………………....……….…………...Ⅵ
第壹章、 緒論………………………………………………………………………..1
第貳章、文獻查證……………………………………………………………………..3
第一節、手術引發之急性炎症反應……………………………...……………...3
第二節、 傷口癒合與炎症反應之機制………………………..…..…………..5
第三節、 免疫營養補充劑在急性炎症反應扮演的角色……......….………...7
第四節、 蜆萃取物在急性炎症反應扮演的角色…………...…....………….12
第五節、 研究目的與概念架構…………...……………………....………….15
第參章、材料與方法
第一節、 實驗動物與試劑………………….………………..….……………..16
第二節、 動物實驗模式……………………………………………..…............18
第三節、 實驗結果檢測與分析……………………….…………...….……….20
第四節、 動物實驗倫理…………….…………………….……………………25
第肆章、探討新型脂肪乳劑在術後傷口癒合及急性炎症反應之調節
第一節、 前言………………………..…….………………………..…………26
第二節、 實驗流程設計與模式……………….….……………….…………. 28
第三節、 實驗結果……………………………….….………………….. ……30
第四節、 討論與結論…………………………….…….……………….. ……33
第伍章、探討蜆萃取物在術後傷口癒合及急性炎症反應之調節
第一節、 前言………………………..………………………….…..…………35
第二節、 實驗流程設計與模式………………….…………….………… …..36
第三節、 實驗結果……………………………….…………….……….. ……38
第四節、 討論與結論…………………………….……………….…….. ……41
第陸章、未來研究方向………..…………………….…………………...…………44
參考文獻……………………………………………………..…………....…………45
圖目錄
圖 1、在急性炎症反應進展中脂質的暫時性改變………………….……….…….51
圖 2、創傷後炎症反應的三階段………………………………………..………….51
圖 3、傷口癒合四階段…………………………………………………....…………52
圖 4、Omega-3與Omega-6在炎症反應中互相拮抗作用…………………..………52
圖 5、Omega-3與Omega-6脂肪酸參與炎症反應之機轉圖………………..………53
圖 6、蜆萃取物調節炎症反應機轉圖………………………………..…..…………53
圖 7、蜆萃取物調節膽固醇代謝機轉圖………………………………..………….54
圖 8、SMOF脂肪乳劑及蜆萃取物(FCE)參與炎症反應及傷口癒合之概念架構...55
圖 9、清醒鼠模式…………………………………………….…………..…………55
圖 10、模擬外科手術模式………………………………………………..…………56
圖 11、傷口癒合計算軟體………………………………………………..…………57
圖 12、皮膚組織病理註記模式…………………………………………..…………57
圖 13、新型脂肪乳劑(SMOF)仿單內容………………………………...…………58
圖 14、SMOF脂肪乳劑實驗流程設計………………………………….…………59
圖 15、SMOF與NS組在WBC的變化………………………………...…………60
圖 16、SMOF與NS組在Platlate的變化……………………………...………….60
圖 17、SMOF與NS組在GOT的變化……………………….………..………….61
圖 18、SMOF與NS組在GPT的變化…………………………..……..…………61
圖 19、SMOF與NS組在BUN的變化………………………..………..…………62
圖 20、SMOF與NS組在CRE的變化…………………………..……..…………62
圖 21、SMOF與NS組在CPK的變化……………………………………..…………63
圖 22、SMOF與NS組在LDH的變化………………………….………..…………63
圖 23、SMOF與NS組在TG的變化……………………………………..…………64
圖 24、SMOF與NS組在TNF-α的變化……………………………….…..…………64
圖 25、SMOF與NS組在IL-6的變化……………………………………...…………65
圖 26、SMOF與NS組在IL-10的變化………………………….……..….…………65
圖 27、SMOF與NS組在傷口癒合百分比………………………………..………66
圖 28、SMOF與NS組在傷口組織癒合情形………………………………..………66
圖 29、SMOF與生理食鹽水組(NS)在術後第14天傷口組織的變化…..….……...67
圖 30、蜆萃取物實驗流程設計…..……………………………………………........68
圖 31、蜆萃取物組(FCE)與生理食鹽水組(NS)在WBC的變化…………..………69
圖 32、蜆萃取物組(FCE)與生理食鹽水組(NS)在GOT的變化…………..………69
圖 33、蜆萃取物組(FCE)與生理食鹽水組(NS)在GPT的變化…………..………70
圖 34、蜆萃取物組(FCE)與生理食鹽水組(NS)在BUN的變化…………..………70
圖 35、蜆萃取物組(FCE)與生理食鹽水組(NS)在CRE的變化…………..….……71
圖 36、蜆萃取物組(FCE)與生理食鹽水組(NS)在CPK的變化…………..…….…71
圖 37、蜆萃取物組(FCE)與生理食鹽水組(NS)在LDH的變化…………..……….72
圖 38、FCE與NS組在TNF-α的變化……………………………………..…………72
圖 39、FCE與NS組在IL-6的變化………………………………………………….73
圖 40、FCE與NS組在IL-10的變化………………………………..……………….73
圖 41、蜆萃取物組(FCE)與生理食鹽水組(NS)在傷口癒合百分比的變化..…….74
圖 42、蜆萃取物組(FCE)與生理食鹽水組(NS)在傷口組織的變化………………74
圖 43、蜆萃取物組(FCE)與生理食鹽水組(NS)在術後第14天傷口組織的變化…75

表目錄
表 1、臨床常見各種脂肪乳劑之脂肪酸成分比較…………………..…………….76
表 2、蜆萃取物化學組成成分…………………..………………………………….77
表 3、比較蜆萃取物(FCE)、豬油(Lard)、玉米油(Maize oil)、魚油(Fish oil)植物
固醇及脂肪酸組成………………………………………………..…………78
表4、蜆萃取物每100g成分分析…………………..………………………………..78

受稿論文………………………………..………………………………..79
1.Arias, J. I., Aller, M. A., & Arias, J. (2009). Surgical inflammation: a pathophysiological rainbow. J Transl Med, 7, 19. doi: 10.1186/1479-5876-7-19
2.Billman, George E. (2012). Omega-3 Polyunsaturated Fatty Acids and Cardiac Rhythm: An Introduction, Editorial, Frontiers in Physiology, pp. 1-15. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=83885380&lang=zh-tw&site=ehost-live
3.Brubaker, A. L., Rendon, J. L., Ramirez, L., Choudhry, M. A., & Kovacs, E. J. (2013). Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol, 190(4), 1746-1757. doi: 10.4049/jimmunol.1201213
4.Calkin, A. C., & Tontonoz, P. (2012). Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol, 13(4), 213-224. doi: 10.1038/nrm3312
5.Carpentier, Y. A., & Hacquebard, M. (2006). Intravenous lipid emulsions to deliver omega 3 fatty acids. Prostaglandins Leukot Essent Fatty Acids, 75(3), 145-148. doi: 10.1016/j.plefa.2006.05.004
6.Chen, T. Y., Lin, B. C., Shiao, M. S., & Pan, B. S. (2008). Lipid-lowering and LDL-oxidation inhibitory effects of aqueous extract of freshwater clam (Corbicula fluminea)--using tilapia as an animal model. J Food Sci, 73(7), H148-154. doi: 10.1111/j.1750-3841.2008.00859.x
7.Chijimatsu, T., Tatsuguchi, I., Abe, K., Oda, H., & Mochizuki, S. (2008). A freshwater clam (Corbicula fluminea) extract improves cholesterol metabolism in rats fed on a high-cholesterol diet. Biosci Biotechnol Biochem, 72(10), 2566-2571.
8.Chijimatsu, T., Tatsuguchi, I., Oda, H., & Mochizuki, S. (2009). A Freshwater clam (Corbicula fluminea) extract reduces cholesterol level and hepatic lipids in normal rats and xenobiotics-induced hypercholesterolemic rats. J Agric Food Chem, 57(8), 3108-3112. doi: 10.1021/jf803308h
9.Chijimatsu, T., Umeki, M., Kataoka, Y., Kobayashi, S., Yamada, K., Oda, H., & Mochizuki, S. (2013). Lipid components prepared from a freshwater Clam (Corbicula fluminea) extract ameliorate hypercholesterolaemia in rats fed high- cholesterol diet. Food Chem, 136(2), 328-334. doi: 10.1016/j.food chem. 2012.08.070
10.Chijimatsu, T., Umeki, M., Kobayashi, S., Kataoka, Y., Yamada, K., Oda, H., & Mochizuki, S. (2015). Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats. Biosci Biotechnol Biochem, 79(7), 1155-1163. doi: 10.1080/09168451.2015.1012147
11.Chijimatsu, T., Umeki, M., Okuda, Y., Yamada, K., Oda, H., & Mochizuki, S. (2011). The fat and protein fractions of freshwater clam ( Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. Br J Nutr, 105(4), 526-534. doi: 10.1017/s0007114510004058
12.Dai, T., Kharkwal, G. B., Tanaka, M., Huang, Y. Y., Bil de Arce, V. J., & Hamblin, M. R. (2011). Animal models of external traumatic wound infections. Virulence, 2(4), 296-315.
13.De Nardi, L., Bellinati-Pires, R., Torrinhas, R. S., Bacchi, C. E., Arias, V., & Waitzberg, D. L. (2008). Effect of fish oil containing parenteral lipid emulsions on neutrophil chemotaxis and resident-macrophages' phagocytosis in rats. Clin Nutr, 27(2), 283-288. doi: 10.1016/j.clnu.2007.12.005
14.Eming, S. A., Krieg, T., & Davidson, J. M. (2007). Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 127(3), 514-525. doi: 10.1038/sj.jid.5700701
15.Emre, Y., Hurtaud, C., Nubel, T., Criscuolo, F., Ricquier, D., & Cassard-Doulcier, A. M. (2007). Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J, 402(2), 271-278. doi: 10.1042/bj20061430
16.Furst, P., & Kuhn, K. S. (2000). Fish oil emulsions: what benefits can they bring? Clin Nutr, 19(1), 7-14. doi: 10.1054/clnu.1999.0072
17.Gilliver, S. C., Ashworth, J. J., & Ashcroft, G. S. (2007). The hormonal regulation of cutaneous wound healing. Clin Dermatol, 25(1), 56-62. doi: 10.1016/j. clindermatol.2006.09.012
18.Grigoras, I., Branisteanu, D. D., Ungureanu, D., Rusu, D., & Ristescu, I. (2014). Early dynamics of leptin plasma level in surgical critically ill patients. a prospective comparative study. Chirurgia (Bucur), 109(1), 66-72.
19.Grimm, H., Mertes, N., Goeters, C., Schlotzer, E., Mayer, K., Grimminger, F., & Fürst, P. (2006). Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients. European Journal of Nutrition, 45(1), 55-60.
20.Hsu, C. L., Hsu, C. C., & Yen, G. C. (2010). Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats. Am J Chin Med, 38(5), 881-894. doi: 10.1142/s0192415x10008329
21.Hua, K. F., Chen, G. M., Ho, C. L., Chen, M. C., Chen, Y. L., Chen, W. J., . . . Lin, C. C. (2012). Freshwater clam extract inhibits inflammatory responses in LPS-activated macrophages by reducing the activation of mitogen-activated protein kinases and NF-kappaB. Nat Prod Commun, 7(11), 1435-1440.
22.Huang, K. C., Wu, W. T., Yang, F. L., Chiu, Y. H., Peng, T. C., Hsu, B. G., . . . Lee, R. P. (2013). Effects of freshwater clam extract supplementation on time to exhaustion, muscle damage, pro/anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Molecules, 18(4), 3825-3838. doi: 10.3390/molecules18043825
23.Huang, Y. T., Huang, Y. H., Hour, T. C., Pan, B. S., Liu, Y. C., & Pan, M. H. (2006). Apoptosis-inducing active components from Corbicula fluminea through activation of caspase-2 and production of reactive oxygen species in human leukemia HL-60 cells. Food Chem Toxicol, 44(8), 1261-1272. doi: 10.1016/j.fct.2006.02.001
24.Januszyk, M., Wong, V. W., Bhatt, K. A., Vial, I. N., Paterno, J., Longaker, M. T., & Gurtner, G. C. (2014). Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis, 10(2).
25.Jarstrand, C., Berghem, L., & Lahnborg, G. (1978). Human granulocyte and reticuloendothelial system function during intralipid infusion. JPEN J Parenter Enteral Nutr, 2(5), 663-670.
26.Khorasani, H., Zheng, Z., Nguyen, C., Zara, J., Zhang, X., Wang, J., . . . Soo, C. (2011). A quantitative approach to scar analysis. Am J Pathol, 178(2), 621-628. doi: 10.1016/j.ajpath.2010.10.019
27.Klein, K. C., & Guha, S. C. (2014). Cutaneous wound healing: Current concepts and advances in wound care. Indian J Plast Surg, 47(3), 303-317. doi: 10.4103/0970-0358.146574
28.Kohl, B. A., & Deutschman, C. S. (2006). The inflammatory response to surgery and trauma. Curr Opin Crit Care, 12(4), 325-332. doi: 10.1097/01.ccx.0000235210. 85073.fc
29.Laurent, T., Okuda, Y., Chijimatsu, T., Umeki, M., Kobayashi, S., Kataoka, Y., . . . Oda, H. (2013). Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats. Evid Based Complement Alternat Med, 2013, 830684. doi: 10.1155/2013/830684
30.Lee, R. P., Subeq, Y. M., Lee, C. J., Hsu, B. G., & Peng, T. C. (2012). Freshwater clam extract decreased hemorrhagic shock-induced liver injury by attenuating TNF-alpha production. Biol Res Nurs, 14(3), 286-293. doi: 10.1177/1099800411408881
31.Lin, C. M., Lin, Y. L., Tsai, N. M., Wu, H. Y., Ho, S. Y., Chen, C. H., . . . Liao, K. W. (2012). Inhibitory effects of chloroform extracts derived from Corbicula fluminea on the release of pro-inflammatory cytokines. J Agric Food Chem, 60(16), 4076-4082. doi: 10.1021/jf2051202
32.McDaniel, J. C., Belury, M., Ahijevych, K., & Blakely, W. (2008). Omega-3 fatty acids effect on wound healing. Wound Repair Regen, 16(3), 337-345. doi: 10.1111/j.1524-475X.2008.00388.x
33.McDaniel, J. C., Massey, K., & Nicolaou, A. (2011). Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair Regen, 19(2), 189-200. doi: 10.1111/j.1524 -475X.2010.00659.x
34.Nigam, A., Talajic, M., Roy, D., Nattel, S., Lambert, J., Nozza, A., . . . Tardif, J. C. (2014). Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J Am Coll Cardiol, 64(14), 1441-1448. doi: 10.1016/j.jacc. 2014.07.956
35.Nishio, N., Okawa, Y., Sakurai, H., & Isobe, K. (2008). Neutrophil depletion delays wound repair in aged mice. Age (Dordr), 30(1), 11-19. doi: 10.1007/s11357 -007-9043-y
36.Oh, Y. T., Lee, J. Y., Lee, J., Kim, H., Yoon, K. S., Choe, W., & Kang, I. (2009). Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-kappaB signaling pathways. Neurosci Lett, 464(2), 93-97. doi: 10.1016/j.neulet.2009.08.040
37.Pastar, I., Stojadinovic, O., Yin, N. C., Ramirez, H., Nusbaum, A. G., Sawaya, A., . . . Tomic-Canic, M. (2014). Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle), 3(7), 445-464. doi: 10.1089/wound.2013.0473
38.Peng, T. C., Subeq, Y. M., Lee, C. J., Lee, C. C., Tsai, C. J., Chang, F. M., & Lee, R. P. (2008). Freshwater clam extract ameliorates acute liver injury induced by hemorrhage in rats. Am J Chin Med, 36(6), 1121-1133.
39.Prodam, F., & Filigheddu, N. (2014). Ghrelin Gene Products in Acute and Chronic Inflammation. Arch Immunol Ther Exp (Warsz). doi: 10.1007/s00005-014 -0287-9
40.Puiggros, C., Sanchez, J., Chacon, P., Sabin, P., Rosello, J., Bou, R., & Planas, M. (2009). Evolution of lipid profile, liver function, and pattern of plasma fatty acids according to the type of lipid emulsion administered in parenteral nutrition in the early postoperative period after digestive surgery. JPEN J Parenter Enteral Nutr, 33(5), 501-512. doi: 10.1177/0148607109333001
41.Rajsekhar, Saha. (2011). UNSEEN ASPECTS OF WOUND HEALING: AN OVERVIEW. International Journal of Pharma and Bio Sciences, 2(4), 275-287.
42.Ruthig, D. J., & Meckling-Gill, K. A. (1999). Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr, 129(10), 1791-1798.
43.Schlotzer, E., & Kanning, U. (2004). Elimination and tolerance of a new parenteral lipid emulsion (SMOF)--a double-blind cross-over study in healthy male volunteers. Ann Nutr Metab, 48(4), 263-268. doi: 10.1159/000080461
44.Schreml, S., Szeimies, R. M., Prantl, L., Karrer, S., Landthaler, M., & Babilas, P. (2010). Oxygen in acute and chronic wound healing. Br J Dermatol, 163(2), 257-268. doi: 10.1111/j.1365-2133.2010.09804.x
45.Schultz, G. S., Davidson, J. M., Kirsner, R. S., Bornstein, P., & Herman, I. M. (2011). Dynamic reciprocity in the wound microenvironment. Wound Repair Regen, 19(2), 134-148. doi: 10.1111/j.1524-475X.2011.00673.x
46.Shah, J. M., Omar, E., Pai, D. R., & Sood, S. (2012). Cellular events and biomarkers of wound healing. Indian J Plast Surg, 45(2), 220-228. doi: 10.4103/0970-0358. 101282
47.Simopoulos, A. P. (2008). The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac J Clin Nutr, 17 Suppl 1, 131-134.
48.Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr, 3(1), 1-7. doi: 10.3945/ an. 111.000893
49.Tian, H., Yao, X., Zeng, R., Sun, R., Tian, H., Shi, C., . . . Yang, K. (2013). Safety and efficacy of a new parenteral lipid emulsion (SMOF) for surgical patients: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev, 71(12), 815-821. doi: 10.1111/nure.12053
50.Volpin, G., Cohen, M., Assaf, M., Meir, T., Katz, R., & Pollack, S. (2014). Cytokine Levels (IL-4, IL-6, IL-8 and TGFbeta) as Potential Biomarkers of Systemic Inflammatory Response in Trauma Patients. Int Orthop, 38(6), 1303-1309. doi: 10.1007/s00264-013-2261-2
51.Waitzberg, D. L., Torrinhas, R. S., & Jacintho, T. M. (2006). New parenteral lipid emulsions for clinical use. JPEN J Parenter Enteral Nutr, 30(4), 351-367.
52.White, E. S., & Mantovani, A. R. (2013). Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol, 229(2), 141-144. doi: 10.1002/path.4126
53.Wu, X., Gao, Z., Song, N., Chua, C., Deng, D., Cao, Y., & Liu, W. (2007). Creating thick linear scar by inserting a gelatin sponge into rat excisional wounds. Wound Repair Regen, 15(4), 595-606. doi: 10.1111/j.1524-475X.2007.00256.x
54.Yacoubian, S., & Serhan, C. N. (2007). New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. Nat Clin Pract Rheumatol, 3(10), 570-579; quiz 571 p following 589. doi: 10.1038 /ncprheum0616
55.Zielins, E. R., Atashroo, D. A., Maan, Z. N., Duscher, D., Walmsley, G. G., Hu, M., . . . Longaker, M. T. (2014). Wound healing: an update. Regen Med, 9(6), 817-830. doi: 10.2217/rme.14.54
56.陳冠名(民100)。探討 Corbicula fluminea 萃取物之抗發炎能力與分離有效成分(碩士論文)。取自臺灣博碩士論文系統。(系統編號 002831219)
57.陳駿逸(民97年5月21日) 靜脈營養支持中肪乳劑的應用現狀及其進展。【線上論壇】。取自http://cancerfree.medicalmap.tw/bencandy.php?fid=53&id=101
58.李興深(民99)。中鏈脂肪酸及長鏈脂肪酸對於使用全靜脈營養治療之重症病患臨床應用評估(碩士論文)。取自臺灣博碩士論文系統。(系統編號 002419309)
59.楊雀戀、章樂綺(民97)。臨床營養的新療法-免疫營養在重症病人的應用。臨床醫學,61,5。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top