( 您好!臺灣時間:2021/03/04 18:40
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Development of an Integrated Material and Capacity Simulation System - Applying in Mechanical Ironmongery Machining Industry
外文關鍵詞:Material Requirements PlanningSystem SimulationAdvanced Materials PlanningModel Driven Architecture
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國內金屬製造企業面臨全球訂單動態性變化的挑戰,除須提高產能效率外,更須對物料存貨及採購進行精實的管理,以達成降低庫存及縮短交期時間的目標,進而提升企業競爭優勢。金屬五金加工業的生產製程主要可分為鍛造、加工、熱處理、組裝四大階段,各階段的生產特性與規劃邏輯都不盡相同,生產管理者須克服複雜背景的困難,規劃出具可執行性的排程計畫。許多企業雖然已導入企業資源規 劃(ERP)系統來協助生產,但仍以物料需求規劃(Material Requirements Planning; MRP)模組策畫生產與採購排程時,由於MRP仍有功能上的不足,管理者經常面臨物料管理效益不佳,而影響產能的問題。
本研究針對國內某金屬五金掛鉤製造公司為案例,以該公司生產線及所面臨的問題為背景,利用先進物料規劃(Advanced Material Planning, AMP)邏輯,結合Excel VBA程式與Plant Simulation軟體工具,採用模型驅動架構(Model-Driven Architecture)系統設計程序,發展出整合性物料與產能模擬系統 (Integrated Material and Capacity Simulation System; IMCSS)。該系統經過實作驗證其系統的架構、邏輯、數學及因果的關係,確認IMCSS設計內容均能符合該公司的現況與需求。同時利用系統模型,模擬導入AMP及IMCSS方案對關鍵績效指標之改善效應,模擬結果顯示AMP及IMCSS具備實際運作之能力,並可解決個案公司物料與產能效率的問題。

The domestic metal manufacturing enterprises are facing challenges of the dynamic changes of global orders. They have to increase productive capacity and precisely manage the material inventory and procurement for targeting the decrease of inventory amount and product delivery time, thus promoting the competitive advantage of business. The manufacturing process of a metal ironmongery machining industry can be mainly divided into four stages (i.e., forging, machining, heat treatment, and assembling). Since each stage has its unique productive characteristic and planning logic, it is very difficult for a planner to propose a production schedule which is fully executable in shop floor. Although many companies have implemented the Enterprise Resource Planning (ERP) system, they still use Material Requirements Planning (MRP) module to plan the production and purchasing schedules; thus managers often have problems of material and capacity according to the deficiency of MRP.
This paper uses a case study of a domestic metal-ironmongery-machining company to develop an integrated material and capacity planning system (IMCSS) for resolving the production problems of the case company. The IMCSS deploys several technologies including advanced materials planning (AMP) logic, combining with Excel VBA program and Plant Simulation software tools, as well as the model driven architecture (MDA) approach to develop the simulation system. During the process of development and verification on the IMCSS this study has confirmed that the operating system architecture, logic, mathematics and causal relationship of system model are all fitted in with the case company's operational situation and practical requirement. This paper utilizes the simulation model to predict the improving effects on key performance indicators by implementing AMP and IMCSS. The simulated results reveal that the AMP and IMCSS are available in practice and can resolve the material and production issues of the case company.

摘 要 i
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 6
1.3 研究方法與步驟 6
第二章 文獻回顧 8
2.1 物料需求規劃 8
2.2 先進規劃與排程系統 10
2.3 應用模擬技術於產能規劃 12
2.4 模型驅動架構方法介紹 14
第三章 發展物料規劃與產能模擬系統 18
3.1 物料規劃與產能模擬系統整體架構 18
3.2 MDA系統分析 25
3.3 系統設計與建構 39
第四章 整合性物料規劃與產能模擬系統驗證與實作展示 48
4.1 面談驗證法 48
4.2 IMCSS改善方案模擬展示及效益評估 62
4.3 綜合評估 67
第五章 結論 68
5.1 未來研究方向 69
參考文獻 70

劉渙釗。(2002)。什麼是ERP? 。安瑟顧問 http://www.anser.com.tw/。
Akrami,B., Karimi, B ., & Moattar Hosseini, S. M.(2006).Two meta heuristic methods for the common cycle economic lot sizing and scheduling in flexible flow shops with limited intermediate buffers: The finite horizon case. Applied Mathematics and Computation, 183(1), 634-645.
Arisha, A., & Young, P. (2004, December). Intelligent simulation-based lot scheduling of photolithography toolsets in a wafer fabrication facility. In Proceedings of the 36th conference on Winter simulation (pp. 1935-1942). Winter Simulation Conference.
Barua, A, Raghavan, N, Upasani, A, & Uzsoy*, R. (2005). Implementing global factory schedules in the face of stochastic disruptions. International Journal of Production Research, 43(4), 793-818.
Cohen, M. A., & Lee, H. L. (1988). Strategic analysis of integrated production-distribution systems: Models and methods. Operations research, 36(2), 216-228.
Cohen, M. A., & Moon, S. (1991). An integrated plant loading model with economies of scale and scope. European Journal of Operational Research,50(3), 266-279.
Chan, F., Chan, H., & Lau, H. (2002). The state of the art in simulation study on FMS scheduling: a comprehensive survey. The International Journal of Advanced Manufacturing Technology, 19(11), 830-849.
Chou, Y. C., Cheng, C. T., Yang, F. C., & Liang, Y. Y. (2007). Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios. International Journal of Production Economics,105(2), 591-606.
Chen, Yin-Yann, Lin, James T, & Chen, Tzu-Li. (2011). A two-phase dynamic dispatching approach to semiconductor wafer testing. Robotics and Computer-Integrated Manufacturing, 27(5), 889-901.
Dellaert, N., & Jeunet, J.(2000). Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm. International Journal of Production Research, 38(5), 1083-1099.
Dellaert, N. P., & Jeunet, J.(2003). Randomized multi-level lot-sizing heuristics for general product structures. European Journal of Operational Research, 148(1), 211-228.
Euwe, M. J., & Wortmann, H.(1997).Planning systems in the next century(I). Computers in Industry, 34(2), 233-237.
Errington, J. (1997, December). Advanced planning and scheduling (APS): a powerful emerging technology. In Next Generation IT in Manufacturing (Digest No: 1997/315), IEE Colloquium on (pp. 13-36). IET.
Gunnar Bolmsj, A., & Harlin, U. (2002). A Survey of the Use of the Discrete-event Simulation in Manufacturing Industry. Journal of Xiamen University(Natural Science).
Gupta, Amit K, & Sivakumar, Appa Iyer. (2002). Simulation based multiobjective schedule optimization in semiconductor manufacturing. Paper presented at the Simulation Conference, 2002. Proceedings of the Winter.
Han, Y., Tang, J., Kaku, I., & Mu,L.(2009). Solving uncapacitated multilevel lot-sizing problems using a particle swarm optimization with flexible inertial weight. Computer & Mathematics with Applications, 57(11-12), 1748-1755.
Hvolby, H. H., & Steger-Jensen, K. (2010). Technical and industrial issues of Advanced Planning and Scheduling (APS) systems. Computers in Industry,61(9), 845-851.
Ho, J. C., Solis, A. O., & Chang, Y.L.(2007). An evaluation of lot-sizing heuristics for deteriorating inventory in material requirements planning systems. Computers & Operations Research, 34(9), 2562-2575.
Lin, J. T., Chen T. L., Lin Y.T.(2009). Critical material planning for TFT-LCD production industry. International Journal of Production Economics,122(2).
Ka ̈mpf, M., & Ko ̈chel, P.(2006). Simulation-based sequencing and lot size optimization for a production-and-inventory system with multiple items. International Journal of Production Economics, 104(1), 191-200.
Kabak, Kamil Erkan, Heavey, Cathal, & Kernan, Brian. (2012). Single toolset modeling approaches in semiconductor manufacturing. Paper presented at the Proceedings of the Winter Simulation Conference.
Lyu, J. J., & Lee, M.C.(2001). A parallel algorithm for the dynamic lot-sizing problem.Computer & Industrial Engineering, 41(2), 127-134.
Lejmi, T., & Sabuncuoglu, I. (2002). Effect of load, processing time and due date variation on the effectiveness of scheduling rules. International Journal of Production Research, 40(4), 945-974.
Liang, S.-K., & Wang, C.-N. (2005). Modularized simulation for lot delivery time forecast in automatic material handling systems of 300 mm semiconductor manufacturing. The International Journal of Advanced Manufacturing Technology, 26(5-6), 645-652.
Lee, YF, Jiang, ZB, & Liu, HR. (2009). Multiple-objective scheduling and real-time dispatching for the semiconductor manufacturing system. Computers & Operations Research, 36(3), 866-884.
Yenisey, M. M. (2006). A flow-network approach for equilibrium of material requirements planning. International journal of production economics, 102(2), 317-332.
Moreno, M. S., & Montagna, J. M. (2009). A multiperiod model for production planning and design in a multiproduct batch environment. Mathematical and Computer Modeling, 4(7-8).
Malmstrom, C. (1997, October). An integrated approach to planning and scheduling at Philips Semiconductors. In Semiconductor Manufacturing Conference Proceedings,1997 IEEE International Symposium on (pp. D27-D29). IEEE.
Öztürk, C., & Ornek, A. M. (2014). Operational extended model formulations for Advanced Planning and Scheduling systems. Applied Mathematical Modelling,38(1), 181-195.
Segerstedt, A.(1995). Cover-time planning, a method for calculation of material requirements. Int. J. Production Economics (41) 355–368.
Sun G.J., Lin. Y.K., Lan Y.F.(2010). Optimizing material procurement planning problem by two-stage fuzzy programming. Computers & Industrial Engineering,58(1), 97-107.
Suerie, C., & Stadtler, H. (2003). The Capacitated Lot-Sizing Problem with Linked Lot Sizes. Management ScienceManage, 49(8), 1039-1054.
Song, D.P. (2006). Raw material release time control for complex make-to-orderproducts with stochastic processing times. International Journal of Production Economics, 103(1), 371-385.

電子全文 電子全文(網際網路公開日期:20211231)
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔