跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱佳駿
研究生(外文):Chu, Chia-Chun
論文名稱:抗菌胜肽之研發暨結構活性關係之探討
論文名稱(外文):Development and Structure-Activity Relationship Study of Antimicrobial Peptides.
指導教授:龍鳳娣
指導教授(外文):Lung, Feng Di
口試委員:程家維呂平江
口試委員(外文):Cheng, Jya-WeiLyu, Ping-Chiang
口試日期:2016-06-30
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:胜肽抗菌胜肽
外文關鍵詞:peptideantimicrobial peptide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
抗生素藥物的濫用造成多重抗藥性細菌的出現,使開發新型抗微生物藥物變得迫切需要。抗微生物胜肽被視為一類新的抗生素,其特徵包含了快速撲殺目標細胞的能力及顯著且廣譜的活性。在我們先前的研究中,MAP-04-03 被開發作為有效的抗微生物胜肽 (MIC= 5 μM),但具有高溶血性 (70.7%)。為了增加其抗微生物活性並降低溶血的副作用,我們藉由置換MAP-04-03序列中數個胺基酸,設計出三個胜肽類似物 (JJ-01, JJ-02 及 JJ-03)。這些類似物藉由固相胜肽合成法合成、RP-HPLC純化,並以 MALDI-TOF 質譜技術鑑定。利用圓二色光譜及生物活性探討其結構活性關係。相較於MAP-04-03,JJ-01, JJ-02 及 JJ-03 的螺旋結構皆下降,JJ-01 的抗微生物活性和MAP-04-03相同 (MIC = 5μM),JJ-02表現出最高的活性 ( MIC= 2.5μM ),JJ-03的抗微生物活性和MAP-04-03相同( MIC= 5μM )。JJ-01 及 JJ-03 的溶血性皆有些微降低,分別為46.2% 及 55.6%;而JJ-02則顯示出最低的溶血性 ( 3.4% )。在此研究中,JJ-02 成為進一步開發抗微生物藥劑的先導胜肽。
The extensive use of antibiotics in medicine results in the multidrug-resistance of bacteria, making the development of new antimicrobial agents an urgent need. Antimicrobial peptides (AMPs) are considered as a new class of antibiotics with characteristics including an ability to kill target cells rapidly and an unusually broad spectrum of activity. In our previous study, MAP-04-03 was discovered as a potent antimicrobial peptide (MIC= 5 μM), but showed high hemolytic activity (70.7%). In the current study, to increase its antimicrobial activity and reduce the hemolytic side effect, three peptides analogs of MAP-04-03 (JJ-01, JJ-02 and JJ-03) were designed by substitution of certain amino acids in its sequence. These peptide analogs were synthesized by solid phase method, purified by RP-HPLC and characterized by MALDI-TOF MS. Structure - activity relationships of these analogs were studied by using circular dichroism and biological assays. The content of helical structure in JJ-01, JJ-02 and JJ-03 was lower than that of MAP-04-03 and the antimicrobial activity of JJ-01 was the same as that of MAP-04-03 (MIC = 5 μM), JJ-02 exhibited the highest activity (MIC= 2.5 μM), while JJ-03 showed the same activity as MAP-0403 (MIC= 5 μM). The hemolytic activity of JJ-01 and JJ-03 decreased slightly (46.2% and 55.6%, respectively), while JJ-02 showed the lowest hemolytic activity (3.4%). The potent peptide JJ-02 with little hemolytic activity is promising and becomes the lead for further development of antimicrobial agents.
Contents__________________________________________________
List of Tables ¬¬-------------------------------------------------------------- 2
List of Figures -------------------------------------------------------------- 3
中文摘要 5
Abstract 6
Introduction 7
Materials and Methods 9
Results and Discussion 13
References 42

[1] Colebrook L. Alexander Fleming 1881-1955. Biographical Memoirs of Fellows of the Royal Society 2 1956:117–27.
[2] Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Archives of medical research 2005;36:697-705.
[3] Brumfitt W, Hamilton-Miller, J. Methicillin-Resistant Staphylococcus aureus. N Engl J Med 1989;320:1188-96.
[4] Gould IM. VRSA—doomsday superbug or damp squib? The Lancet Infectious Diseases 2010;10:816-8.
[5] Hiramatsu K. Vancomycin resistance in staphylococci. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 1998;1:135-50.
[6] Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nature reviews Microbiology 2006;4:36-45.
[7] Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochimica et biophysica acta 2009;1788:1687-92.
[8] de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Molecular immunology 2008;45:1916-25.
[9] Ernst CM, Peschel A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Molecular microbiology 2011;80:290-9.
[10] Fahrner RL, Dieckmann T, Harwig SS, Lehrer RI, Eisenberg D, Feigon J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry & biology 1996;3:543-50.
[11] Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Current pharmaceutical design 2009;15:2377-92.
[12] Mitsuhara I, Nakajima Y, Natori S, Mitsuoka T, Ohashi Y. In vitro growth inhibition of human intestinal bacteria by sarcotoxin IA, an insect bactericidal peptide. Biotechnology letters 2001;23:569-73.
[13] Liu Z, Liu H, Liu X, Wu X. Purification and cloning of a novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology 2008;149:557-61.
[14] Lung FD, Wang KS, Liao ZJ, Hsu SK, Song FY, Liou CC, et al. Discovery of potent antimicrobial peptide analogs of Ixosin-B. Bioorganic & medicinal chemistry letters 2012;22:4185-8.
[15] Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proceedings of the National Academy of Sciences of the United States of America 2000;97:8245-50.
[16] Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, et al. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 2000;39:11855-64.
[17] Kim HK, Lee, D.G., Park Y., Kim, H.N., Choi, B.H., Choi, C.H., Hahm, K.S. Antibacterial activities of peptides designed as hybrids of antimicrobial peptides. Biotechnology letters 2002;24:347–53.
[18] Appendini P, Hotchkiss JH. Antimicrobial activity of a 14-residue synthetic peptide against foodborne microorganisms. Journal of food protection 2000;63:889-93.
[19] Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). The Journal of biological chemistry 1986;261:16704-13.
[20] Maeng CY, Oh MS, Park IH, Hong HJ. Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Biochemical and biophysical research communications 2001;282:787-92.
[21] Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, et al. De novo antimicrobial peptides with low mammalian cell toxicity. Journal of medicinal chemistry 1996;39:3107-13.
[22] Lung FD, Tsai JY, Wei SY, Cheng JW, Chen C, Li P, et al. Novel peptide inhibitors for Grb2 SH2 domain and their detection by surface plasmon resonance. The journal of peptide research : official journal of the American Peptide Society 2002;60:143-9.
[23] Gisin BF, Merrifield RB, Tosteson DC. Solid-phase synthesis of the cyclododecadepsipeptide Valinomycin. Journal of the American Chemical Society 1969;91:2691-5.
[24] Meienhofer J, Waki M, Heimer EP, Lambros TJ, Makofske RC, Chang CD. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids. International journal of peptide and protein research 1979;13:35-42.
[25] Kaiser E, Colescott RL, Bossinger CD, Cook PI. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Analytical biochemistry 1970;34:595-8.
[26] Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of applied microbiology 2001;91:453-62.
[27] Greenfield NJ. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Analytical biochemistry 1996;235:1-10.
[28] Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD, et al. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. The Journal of biological chemistry 1999;274:13181-92.
[29] Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, et al. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Journal of molecular biology 2008;379:38-50.
[30] Lauterwein J, Bosch C, Brown LR, Wuthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochimica et biophysica acta 1979;556:244-64.
[31] Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews 2003;55:27-55.
[32] Straus SK, Hancock RE. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochimica et biophysica acta 2006;1758:1215-23.
[33] Tatko CD, Waters ML. The geometry and efficacy of cation-pi interactions in a diagonal position of a designed beta-hairpin. Protein science : a publication of the Protein Society 2003;12:2443-52.
[34] Li SC, Goto NK, Williams KA, Deber CM. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. PNAS 1996;93:6676-81.
[35] Liao PT. Design, Synthesis and Antimicrobial Activity of Peptidic Analogs of Ixosin-B Amide: Tunghai University; 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top