跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:駱哲民
研究生(外文):Che-Min Lo
論文名稱:人類碳酸酐酶八號基因在肌陣攣癲癇疾病模式中的轉錄調控分析
論文名稱(外文):The Promoter Analysis and Transcriptional Regulation of Human Carbonic Anhydrase VIII (hCAVIII) Gene in a MERRF Disease Model
指導教授:謝明麗謝明麗引用關係
指導教授(外文):Mingli Hsieh
口試委員:蔡玉真陳永恩
口試委員(外文):Yu-Chen TsaiMichael W.Y. Chan
口試日期:2016-01-15
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
外文關鍵詞:mitochondrial diseasecarbonic anhydrase-related protein VIIIMyoclonic epilepsy associated with ragged-red fibers (MERRF)transcriptional regulationGC box-binding protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
肌陣攣性癲癇發作伴破碎紅纖維病變 (Myoclonic epilepsy associated with ragged-red fibers , MERRF)是一種母性遺傳的粒線體腦肌疾病,主要的症狀會有肌陣孿 (Myoclonus)、.癲癇 (Generalized epilepsy) 、運動失調 (Ataxia)等臨床表徵。致病的原因是因為在粒線體中負責攜帶賴氨酸(Lysine)的tRNA基因上產生了A8344G的粒線體核苷酸序列(mtDNA)點突變,佔了80%以上。從先前實驗室的研究結果已知在帶有A8344G粒線體DNA點突變的融合細胞株中,碳酸酐酶八號(carbonic anhydrase VIII, CA8)在mRNA和蛋白質表現上,皆顯著低於在正常的融合細胞株中,因此猜測CA8在兩株融合細胞株中表現量的差異,很可能是來自CA8基因轉錄活性的差異。然而,在MERRF突變融合細胞株中使得核內CA8轉錄活性降低的分子機制目前還未可知。首先,我們建立了人類CA8基因啟動子報導載體,包含了在CA8基因5’側區分析而得的GC-box、AP-2和TATA-binding element。。將建立好的hCA8啟動子報導載體送到正常和突變的融合細胞株中進行冷光活性分析,結果發現在MERRF細胞株中CA8啟動子的活性顯著低於在正常的細胞株當中。我們也利用一系列突變的人類CA8啟動子報導載體進一步去分析,發現到重要的轉錄因子會作用在CA8啟動子近端的GC-box序列去調控CA8基因的轉錄,而我們所熟知的轉錄因子Sp1和其他Sp家族中的成員是主要會辨識這段GC-box的序列去活化下游的基因表達。然而,我們卻偵測不到在正常和MERRF疾病的融合細胞株中,內生性Sp1的蛋白表現量有明顯的差異。在進一步去確定Sp1的角色後,結果發現當我們外送大量的eGFP-Sp1到融合細胞株當中,可以顯著的增加人類CA8啟動子活性,但是並無法偵測到明顯內生性CA8蛋白表現量的增加。進一步,利用序列專一性的shRNA去knockdown細胞株中內生性的Sp1,也無法觀察到CA8的蛋白表現量有顯著的降低。令我們意外的是,當改用攜帶較小標定蛋白的Flag-Sp1大量表達在HEK-293T細胞中,卻可以顯著地增加內生性CA8蛋白的表達,而先前報導系統的分析已知道hCA8基因在293T細胞中有較強的啟動子活性。進一步證明,當表達Sp1的顯性抑制蛋白後,會使hCA8啟動子活性明顯地下降,顯示了GC box-binding protein對於hCA8轉錄活性的重要性。藉由染色體免疫沉澱法也證實,在D5-1融合細胞株中可以偵測到內生性Sp1結合到近端hCA8啟動子的訊號。總結目前的研究結果,不管是in vitro或是in vivo的分析都顯示Sp1確實是透過hCA8啟動子近端的GC box序列來啟動CA8的轉錄活性。然而,mtDNA的突變到底是透過什麼樣的分子機制影響了哪個轉錄因子,而使得核內CA8基因轉錄活性的下降,還需要更進一步的分析。
Myoclonic epilepsy with ragged-red fibers (MERRF) is a maternally inherited mitochondrial neuromuscular disease, which is pathologically characterized by myoclonus, generalized epilepsy and ataxia. The most common mutation in MERRF syndrome is an A-to-G transition mutation at nucleotide pair (np) 8,344 in tRNALys gene of mitochondrial DNA (mtDNA). Our previous study reported a significant decrease of carbonic anhydrase VIII (CA8) in mRNA and protein levels in cybrids harboring A8344G mtDNA point mutation. However, the regulatory mechanisms underlying low transcriptional activity of human nuclear CA8 (hCA8) gene in MERRF disease are still unknown. We have established a luciferase gene-carrying hCA8 promoter reporter construct containing several putative transcription factor-binding sites, including GC-box, AP-2 and TATA-binding element in the 5’flanking region of the hCA8 gene. The reporter system showed a significant decrease of the promoter activity in the mutant MERRF cellular model. Using a series of mutated hCA8 promoter constructs, we demonstrated that GC-box, recognized by Sp1 and the Sp family members, may be a key cis-element functioning at the proximal region of the promoter. However, there is no detectable difference in the endogenous expression of Sp1 between wild-type and mutant cybrids. In further confirming the role of Sp1, a significant increase of the hCA8 promoter activity was observed in cybrids with over-expression of eGFP-Sp1, but there is no detectable increase on the CA8 protein and RNA expression. Moreover, knockdown of endogenous Sp1 by the sequence-specific shRNA did not result in any decrease of the endogenous CA8 protein level. Unexpectedly, over-expression of Flag-Sp1, compared to eGFP-Sp1, significantly increased endogenous CA8 protein expression observed in neuron-like HEK-293T cells, where a strong hCA8 promoter activity was identified in the luciferase reporter assay. As expected, expression of dominant negative Sp1 to compete with all GC-box binding activities resulted in a decreased hCA8 promoter activity in 293T cells. To confirm the role of Sp1 in vivo, chromatin immunoprecipitation (ChIP) assay was performed and the results demonstrated the binding ability of endogenous Sp1 on hCA8 promoter in wild-type cybrid cells. Taken together, these results suggest that Sp1 transactivates hCA8 gene through the proximal GC box element on the promoter region both in vitro and in vivo. However, the key modulator-responsive factor to the mtDNA mutation and how it may affect nuclear hCA8 gene transcription still need further investigation.
致謝 …………………………………………………1

中文摘要 …………………………………………………2-3

英文摘要 ………………………………………………4-5

前言 …………………………………………………6-13

材料與方法……………………………………………14-22

結果 …………………………………………………23-33

討論 …………………………………………………34-49

文獻 …………………………………………………50-57

圖目 …………………………………………………58-85
Al-Sarraj, A., Day, R.M., and Thiel, G. (2005). Specificity of transcriptional regulation by the zinc finger transcription factors Sp1, Sp3, and Egr-1. J Cell Biochem 94, 153-167.

Amuthan, G., Biswas, G., Ananadatheerthavarada, H.K., Vijayasarathy, C., Shephard, H.M., and Avadhani, N.G. (2002). Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21, 7839-7849.

Arnould, T., Vankoningsloo, S., Renard, P., Houbion, A., Ninane, N., Demazy, C., Remacle, J., and Raes, M. (2002). CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 21, 53-63.

Arpa, J., Campos, Y., Gutierrez-Molina, M., Martin-Casanueva, M.A., Cruz-Martinez, A., Perez-Conde, M.C., Lopez-Pajares, R., Morales, M.C., Tatay, J., Lacasa, T., et al. (1997). Gene dosage effect in one family with myoclonic epilepsy and ragged-red fibers (MERRF). Acta Neurol Scand 96, 65-71.

Arya, R., Mallik, M., and Lakhotia, S.C. (2007). Heat shock genes - integrating cell survival and death. J Biosci 32, 595-610.

Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res 21, 381-395.

Barth, N., Langmann, T., Scholmerich, J., Schmitz, G., and Schaffler, A. (2002). Identification of regulatory elements in the human adipose most abundant gene transcript-1 ( apM-1) promoter: role of SP1/SP3 and TNF-alpha as regulatory pathways. Diabetologia 45, 1425-1433.

Bergenhem, N.C., Hallberg, M., and Wisen, S. (1998). Molecular characterization of the human carbonic anhydrase-related protein (HCA-RP VIII). Biochim Biophys Acta 1384, 294-298.

Bindoff, L.A., Birch-Machin, M.A., Cartlidge, N.E., Parker, W.D., Jr., and Turnbull, D.M. (1991). Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci 104, 203-208.

Biswas, G., Adebanjo, O.A., Freedman, B.D., Anandatheerthavarada, H.K., Vijayasarathy, C., Zaidi, M., Kotlikoff, M., and Avadhani, N.G. (1999). Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18, 522-533.

Biswas, G., Anandatheerthavarada, H.K., and Avadhani, N.G. (2005). Mechanism of mitochondrial stress-induced resistance to apoptosis in mitochondrial DNA-depleted C2C12 myocytes. Cell Death Differ 12, 266-278.

Bouwman, P., and Philipsen, S. (2002). Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195, 27-38.

Chan, D.C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.

Chang, W.C., and Hung, J.J. (2012). Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci 19, 94.

Chen, C.Y., Chen, H.F., Gi, S.J., Chi, T.H., Cheng, C.K., Hsu, C.F., Ma, Y.S., Wei, Y.H., Liu, C.S., and Hsieh, M. (2011). Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation. Mitochondrion 11, 739-749.

Chen, H.F., Chen, C.Y., Lin, T.H., Huang, Z.W., Chi, T.H., Ma, Y.S., Wu, S.B., Wei, Y.H., and Hsieh, M. (2012). The protective roles of phosphorylated heat shock protein 27 in human cells harboring myoclonus epilepsy with ragged-red fibers A8344G mtDNA mutation. FEBS J 279, 2987-3001.

Chinnery, P.F., and Schon, E.A. (2003). Mitochondria. J Neurol Neurosurg Psychiatry 74, 1188-1199.

Chinnery, P.F., Turnbull, D.M., Howell, N., and Andrews, R.M. (1998). Mitochondrial DNA mutations and pathogenicity. J Med Genet 35, 701-702.

Chomyn, A., Meola, G., Bresolin, N., Lai, S.T., Scarlato, G., and Attardi, G. (1991). In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol 11, 2236-2244.

Chu, C., Zavala, K., Fahimi, A., Lee, J., Xue, Q., Eilers, H., and Schumacher, M.A. (2011). Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol Pain 7, 44.

Concannon, C.G., Gorman, A.M., and Samali, A. (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61-70.

DiMauro, S., and Schon, E.A. (2003). Mitochondrial respiratory-chain diseases. N Engl J Med 348, 2656-2668.

Ding, H., Benotmane, A.M., Suske, G., Collen, D., and Belayew, A. (1999). Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem 274, 19573-19580.

Enriquez, J.A., Chomyn, A., and Attardi, G. (1995). MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 10, 47-55.

Epstein, C.B., Waddle, J.A., Hale, W.t., Dave, V., Thornton, J., Macatee, T.L., Garner, H.R., and Butow, R.A. (2001). Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12, 297-308.

Friedman, M.J., Li, S., and Li, X.J. (2009). Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem 284, 27944-27951.

Fukuhara, N., Tokiguchi, S., Shirakawa, K., and Tsubaki, T. (1980). Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci 47, 117-133.

Gartel, A.L., Goufman, E., Najmabadi, F., and Tyner, A.L. (2000). Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene 19, 5182-5188.

Hagen, G., Muller, S., Beato, M., and Suske, G. (1992). Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res 20, 5519-5525.

Hewett-Emmett, D., and Tashian, R.E. (1996). Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol 5, 50-77.

Hirota, J., Ando, H., Hamada, K., and Mikoshiba, K. (2003). Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372, 435-441.

Huang, M.S., Wang, T.K., Liu, Y.W., Li, Y.T., Chi, T.H., Chou, C.W., and Hsieh, M. (2014). Roles of carbonic anhydrase 8 in neuronal cells and zebrafish. Biochim Biophys Acta 1840, 2829-2842.

James, A.M., Wei, Y.H., Pang, C.Y., and Murphy, M.P. (1996). Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318 ( Pt 2), 401-407.

Jiao, Y., Yan, J., Zhao, Y., Donahue, L.R., Beamer, W.G., Li, X., Roe, B.A., Ledoux, M.S., and Gu, W. (2005). Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171, 1239-1246.

Johar, K., Priya, A., Dhar, S., Liu, Q., and Wong-Riley, M.T. (2013). Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons. J Neurochem 127, 496-508.

Kaczynski, J., Cook, T., and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206.

Kato, K. (1990). Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Lett 271, 137-140.

Kaya, N., Aldhalaan, H., Al-Younes, B., Colak, D., Shuaib, T., Al-Mohaileb, F., Al-Sugair, A., Nester, M., Al-Yamani, S., Al-Bakheet, A., et al. (2011). Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 156B, 826-834.

Kennett, S.B., Udvadia, A.J., and Horowitz, J.M. (1997). Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res 25, 3110-3117.

Lakkis, M.M., O'Shea, K.S., and Tashian, R.E. (1997). Differential expression of the carbonic anhydrase genes for CA VII (Car7) and CA-RP VIII (Car8) in mouse brain. J Histochem Cytochem 45, 657-662.

Lalonde, J., Saia, G., and Gill, G. (2014). Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 7, ra51.

Larsson, N.G., Tulinius, M.H., Holme, E., Oldfors, A., Andersen, O., Wahlstrom, J., and Aasly, J. (1992). Segregation and manifestations of the mtDNA tRNA(Lys) A-->G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet 51, 1201-1212.

Lee, T.I., Johnstone, S.E., and Young, R.A. (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1, 729-748.

Leonard, J.V., and Schapira, A.H. (2000). Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355, 299-304.

Li, L., He, S., Sun, J.M., and Davie, J.R. (2004). Gene regulation by Sp1 and Sp3. Biochem Cell Biol 82, 460-471.

Liu, Z., and Butow, R.A. (2006). Mitochondrial retrograde signaling. Annu Rev Genet 40, 159-185.

McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr Biol 16, R551-560.

Noe, V., Chen, C., Alemany, C., Nicolas, M., Caragol, I., Chasin, L.A., and Ciudad, C.J. (1997). Cell-growth regulation of the hamster dihydrofolate reductase gene promoter by transcription factor Sp1. Eur J Biochem 249, 13-20.

Noer, A.S., Sudoyo, H., Lertrit, P., Thyagarajan, D., Utthanaphol, P., Kapsa, R., Byrne, E., and Marzuki, S. (1991). A tRNA(Lys) mutation in the mtDNA is the causal genetic lesion underlying myoclonic epilepsy and ragged-red fiber (MERRF) syndrome. Am J Hum Genet 49, 715-722.

Parikh, V.S., Morgan, M.M., Scott, R., Clements, L.S., and Butow, R.A. (1987). The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235, 576-580.

Picaud, S.S., Muniz, J.R., Kramm, A., Pilka, E.S., Kochan, G., Oppermann, U., and Yue, W.W. (2009). Crystal structure of human carbonic anhydrase-related protein VIII reveals the basis for catalytic silencing. Proteins 76, 507-511.

Prestridge, D.S. (1995). Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol 249, 923-932.

Ramos, B., Valin, A., Sun, X., and Gill, G. (2009). Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci 42, 152-159.

Rosing, H.S., Hopkins, L.C., Wallace, D.C., Epstein, C.M., and Weidenheim, K. (1985). Maternally inherited mitochondrial myopathy and myoclonic epilepsy. Ann Neurol 17, 228-237.

Sapetschnig, A., Koch, F., Rischitor, G., Mennenga, T., and Suske, G. (2004). Complexity of translationally controlled transcription factor Sp3 isoform expression. J Biol Chem 279, 42095-42105.

Schapira, A.H. (2002). The "new" mitochondrial disorders. J Neurol Neurosurg Psychiatry 72, 144-149.

Schapira, A.H. (2006). Mitochondrial disease. Lancet 368, 70-82.

Sekito, T., Liu, Z., Thornton, J., and Butow, R.A. (2002). RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13, 795-804.

Shaikh, S.B., and Nicholson, L.F. (2009). Effects of chronic low dose rotenone treatment on human microglial cells. Mol Neurodegener 4, 55.

Shoffner, J.M., Lott, M.T., Lezza, A.M., Seibel, P., Ballinger, S.W., and Wallace, D.C. (1990). Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61, 931-937.

Shou, Y., Baron, S., and Poncz, M. (1998). An Sp1-binding silencer element is a critical negative regulator of the megakaryocyte-specific alphaIIb gene. J Biol Chem 273, 5716-5726.

Song, J., Mangold, M., Suske, G., Geltinger, C., Kanazawa, I., Sun, K., and Yokoyama, K.K. (2001). Characterization and promoter analysis of the mouse gene for transcription factor Sp4. Gene 264, 19-27.

Sowa, Y., Orita, T., Minamikawa-Hiranabe, S., Mizuno, T., Nomura, H., and Sakai, T. (1999). Sp3, but not Sp1, mediates the transcriptional activation of the p21/WAF1/Cip1 gene promoter by histone deacetylase inhibitor. Cancer Res 59, 4266-4270.

Suske, G. (1999). The Sp-family of transcription factors. Gene 238, 291-300.

Tan, N.Y., and Khachigian, L.M. (2009). Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29, 2483-2488.

Taniuchi, K., Nishimori, I., Takeuchi, T., Ohtsuki, Y., and Onishi, S. (2002). cDNA cloning and developmental expression of murine carbonic anhydrase-related proteins VIII, X, and XI. Brain Res Mol Brain Res 109, 207-215.

Traven, A., Wong, J.M., Xu, D., Sopta, M., and Ingles, C.J. (2001). Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276, 4020-4027.

Turkmen, S., Guo, G., Garshasbi, M., Hoffmann, K., Alshalah, A.J., Mischung, C., Kuss, A., Humphrey, N., Mundlos, S., and Robinson, P.N. (2009). CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5, e1000487.

Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407.

Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M., Elsas, L.J., 2nd, and Nikoskelainen, E.K. (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242, 1427-1430.

Wang, T.K., Cheng, C.K., Chi, T.H., Ma, Y.S., Wu, S.B., Wei, Y.H., and Hsieh, M. (2014). Effects of carbonic anhydrase-related protein VIII on human cells harbouring an A8344G mitochondrial DNA mutation. Biochem J 459, 149-160.

Wang, T.K., Lin, Y.M., Lo, C.M., Tang, C.H., Teng, C.J., Chao, W.T., Wu, M.H., Liu, C.S., and Hsieh, M. (2015). Oncogenic roles of carbonic anhydrase 8 in human osteosarcoma cells. Tumour Biol.

Yoneda, M., Miyatake, T., and Attardi, G. (1994). Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol 14, 2699-2712.

Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265, 17174-17179.

Zhao, C., and Meng, A. (2005). Sp1-like transcription factors are regulators of embryonic development in vertebrates. Dev Growth Differ 47, 201-211.

Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., and Hoogenraad, N.J. (2002). A mitochondrial specific stress response in mammalian cells. EMBO J 21, 4411-4419.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top