跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊岳霖
研究生(外文):Yang Yue-Lin
論文名稱:熱氧化共濺鍍釩及不銹鋼金屬膜製備高效能熱致變氧化釩薄膜與其長期穩定性研究
論文名稱(外文):The Novel Preparation Method of High-Performance Thermochromic Vanadium Dioxide Films by Thermal Oxidation of Vanadium-Stainless Steel Co-Sputtered Films and the Study of Its Long-Term Stability
指導教授:楊重光楊重光引用關係
口試委員:廖朝光莊瑞誠邱德威潘冠廷楊重光
口試日期:2016-07-18
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:熱氧化濺鍍法熱致變二氧化釩
外文關鍵詞:Stainless steelThermal oxidationSputterThermochromicVanadium dioxide不鏽鋼
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具熱致變特性之二氧化釩薄膜因有較高的電阻溫度係數故可被應用於非冷卻型微輻射熱感測器(Bolometer)元件之電阻式熱敏元件材料。其次因透明度佳亦可應用於透明窗戶之鍍膜,形成不須用電驅動的節能窗戶。在本論文第一部分中,以共濺鍍法製備釩金屬含少量不銹鋼的合金膜,並使用熱氧化法製備出VOx:SS(SS代表不銹鋼元素)於無鹼玻璃上。經研究結果發現摻雜不銹鋼元素除使薄膜不易過氧化並增加二氧化釩的純度外,亦發現摻雜不銹鋼元素形成之氧化釩薄膜有遲滯迴圈之寬度縮小,與其相變化的變化範圍寬度增加的現象。而使用熱氧化法可以在相對較低的溫度如攝氏400度以下,並使用空氣製備出具熱致變效果之氧化釩薄膜。
由於氧化釩在常溫常壓下容易自行氧化成最穩定之五氧化二釩,因此論文第二部分則探討第一部分所製備之薄膜之劣質化抑制、劣質化測試與兼具抗反射與保護性的阻隔膜鍍製實驗。實驗使用高溫濕空氣進行劣質化測試有與無阻隔膜的樣品。實驗結果顯示有鍍製保護膜的樣品與有摻雜不銹鋼的樣品在高溫高濕環境中壽命因此得以延長。
The preparation of high-performance thermochromic vanadium dioxide films and the assurance of its batch-to-batch uniformity were technically difficult since the oxidation number of vanadium ranged from +2 to +5 under various reducing or oxidizing atmospheres at elevated temperatures. In this work, the vanadium dioxide films were fabricated by thermal-oxidation of vanadium and stainless-steel (mainly containing Fe, Cr, Ni) co-sputtered thin films at elevated temperature under air atmosphere. The as-prepared vanadium oxide films were further characterized by four-point probe measurement, ellipsometry, grazing incidence X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis. Our experiments demonstrated that the use of SS target could efficiently deposit the magnetic atoms (iron and nickel) and nonmagnetic Cr elements into vanadium films in a stable plasma conditions. The shift of the main peak of XRD patterns to smaller angles showed the Fe, Cr, and Ni elements were successfully doped into vanadium oxide films. These dopants depressed the vanadium atoms from over-oxidization during the heat treatment. As a result, a noticeable amount of VO2(M) crystalline phase (higher V(+4)/V(+5) ratios) was obtained from the as-prepared films accompanied with the increment of the SS target voltage. The second part of this dissertation is to fabricate the barrier layer protection on the as-deposited VO2 films. The samples doped with stainless steel and covered with barrier layers show significant long-term stability in either wet or dry high temperature environment. With an equivalent barrier layers thickness, all samples can be ranked by its stability in both wet and dry test as follows: Wet condition (95% RH 80oC): ZnO/SiO2~TiO2/ZnO>Parlyene N~VO2:SS>TiO2/SiO2>Plain VO2, and for dry condition(300oC): TiO2/ZnO>ZnO/SiO2~TiO2/SiO2>VO2:SS>Plain VO2.
摘 要 I
ABSTRACT II
誌 謝 IV
目錄 V
第一章 緒論 1
1.1前言 1
1.2 紅外光感測器發展現況 2
1.2.1 冷卻型熱像攝影機 5
1.2.2 非冷卻型熱像攝影機 5
1.2.2.1 微輻射熱感測器 6
1.2.2.2 鐵電材料感測器 7
1.3 二氧化釩在熱致變色聰明視窗上的應用 8
第二章 文獻回顧與製備技術概述 10
2.1 VO2相轉變的發現與基本性質 10
2.1.1熱致變性(Thermochromism) 15
2.1.2光致變性(Photochromism) 15
2.1.3電致變性(Electrochromism) 16
2.2 不純物摻雜對VO2相轉變之影響 16
2.2.1 VO2相轉變溫度的變化 21
2.2.2 VO2相轉變之遲滯現象 21
2.3 基板對VO2相轉變之影響 21
2.4 薄膜製備技術與抗反射膜設計 22
2.4.1 溶膠凝膠法 24
2.4.2 反應性濺鍍法 25
2.4.3 金屬熱氧化法 27
2.4.4 脈衝雷射蒸鍍法 27
2.4.5 抗衰變抗反射膜設計 27
2.4.5.1 金屬氧化物保護膜層概述 28
2.4.5.2 單層抗反射阻隔膜 28
2.4.5.3 雙層抗反射阻隔膜 29
第三章 實驗方法及儀器設備 31
3.1 樣品製備流程 31
3.1.1 共濺鍍製備金屬薄膜 31
3.1.2 熱氧化形成氧化釩薄膜 36
3.1.3 鍍制抗反射阻隔膜層 37
3.2 樣品鑑定分析儀器 37
3.2.1 原子力顯微鏡與橢圓儀 37
3.2.2 低掠角X射線繞射儀 38
3.2.3 拉曼光譜儀 39
3.2.4 X光光電子能譜儀 39
3.2.5 四點探針系統 39
3.2.6 紫外可見光光譜儀 39
3.2.7 紅外光光譜儀 40
第四章 實驗結果與討論 41
4.1 共濺鍍與熱氧化法製備VOX:SS結果討論 41
4.1.1 薄膜厚度與光學性質分析 41
4.1.2 低掠角X射線繞射晶相分析 44
4.1.3 拉曼光譜分析 46
4.1.4 X光光電子能譜元素分析 47
4.1.5 變溫電阻分析 50
4.1.6 紫外可見光近紅外光譜儀分析 54
4.1.7 遲滯曲線特性與文獻比較 62
4.1.8 小結 65
4.2 VOX:SS保護膜之鍍製與劣質化結果討論 65
4.2.1 有無鍍製阻隔層樣品於濕環境劣質化測試結果 70
4.2.2 有無鍍製阻隔層樣品於乾環境劣質化測試結果 76
4.2.3 小結 82
第五章 結論 83
參考文獻 85
附錄 90
[1] M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, , Science, 348 (2015) 1455-1460.
[2] G. Busch and R. Kebn, Solid State Physics, 11 (Academic Press, 1960) 1–40.
[3] Antoni Rogalski, Infrared Physics & Technology, 43 (2002) 187-210.
[4] V. Yu. Zerov and V. G. Malyarov, J. Opt. Technol., 68 (2001) 939-948.
[5] Y.-X. Ji, S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, Thin Solid Films, 562 (2014) 568-573.
[6] F. J. Morin, Phys. Rev. Lett., 3(1) (1959) 34-35.
[7] S. Minomora and H. Nagasaki, J. Phys. Soc. Japan, 19 (1964) 131.
[8] C. N. Berglund and H. J. Guggenheim, Phys. Rev., 185 (1969) 1022.
[9] C. N. Berglund and A. Jayaroman, Phys. Rev., 85 (1969) 1034.
[10] B. Goodenough, J. Solid State Chem., 3 (1971) 490.
[11] W. R. Roach, Appl. Phys. Lett., 19 (1971) 453.
[12] W. Haidinger and D. Gross, Thin Solid Film, 12 (1972) 433.
[13] R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund, Jr, J. Appl. Phys., 92 (7) (2002) 4031-4036.
[14] A. A. Bugaev, V. V. Gudyalis, B. P. Zakharchenya and F. A. Chudnovskiĭ, JETP Lett. 34(8) (1982) 430-433.
[15] A. A. Bugaev and A. V. Klochkov, Sov. Phys. Solid State, 26(11) (1984) 2100-2101.
[16] G. Stefanovich, A. Pergament and D. Stefanovich, J. Phys. Condens. Matter., 12 (2000) 8837-8845.
[17] Bertrand L. Chamberland, Chadds Ford, Pa., and Donald B. Rogers, Temperature sensitive conductive metal oxide modified vanadium dioxides, U.S. Patent 3542697, 1970.
[18] W. Brückner, U. Gerlach, W. Moldenhauer, H. P. Brückner, N. Mattern, H. Oppermann,., physica status solidi (a), 38 (1976) 93-102.
[19] Ö. Sävborg and M. Nygren, physica status solidi (a), 43 (1977) 645-652.
[20] T. E. Phillips, R. A. Murphy, and T. O. Poehler, Materials Research Bulletin, 22 (1987) 1113-1123.
[21] P. Jin and S. Tanemura, Thin Solid Films,281 (1996) 239-242.
[22] F. Béteille and J. Livage, Journal of Sol-Gel Science and Technology, 13 (1998) 915-921.
[23] E. Cavanna, J. P. Segaud, and J. Livage, Materials Research Bulletin, 34 (1999) 167-177.
[24] G. Fu, "Metal-semiconductor transition materials : FeS and VO2 thin films by RF reactive sputtering," Universitätsbibliothek, Gießen, 2007.
[25] C. Piccirillo, R. Binions, and I. P. Parkin, European Journal of Inorganic Chemistry, 2007 (2007) 4050-4055.
[26] T. C. K. Yang, B. P. P. Hung, Y. C. Chen, M.-H. Lai, and T.-W. Chung, Sensors and Actuators A: Physical, 140 (2007) 194-199.
[27] Y. Jiazhen, Z. Yue, H. Wanxia, and T. Mingjin, Thin Solid Films, 516 (2008) 8554-8558.
[28] B. Chen, D. Yang, P. A. Charpentier, and M. Zeman, Solar Energy Materials and Solar Cells, 93 (2009) 1550-1554.
[29] M. P. Jiang, M. Zhao, and J. H. Li, Advanced Materials Research, 284-286 (2011) 2177-2181.
[30] E. Strelcov, A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, et al., Nano Lett, 12 (2012) 6198-205.
[31] A. Rúa, R. Cabrera, H. Coy, E. Merced, N. Sepúlveda, and F. l. E. Fernández, Journal of Applied Physics, 111 (2012) 104502.
[32] Y. Gao, C. Cao, L. Dai, H. Luo, M. Kanehira, Y. Ding, Energy & Environmental Science, 5 (2012) 8708.
[33] Y. Zhang, J. Zhang, X. Zhang, Y. Deng, Y. Zhong, C. Huang, et al., Ceramics International, 39 (2013) 8363-8376.
[34] M. K. Dietrich, B. G. Kramm, M. Becker, B. K. Meyer, A. Polity, and P. J. Klar, Journal of Applied Physics, 117 (2015) 185301.
[35] A. L. Semenov, Phys. Solid State, 36 (7) (1994) 1079-1080.
[36] Blauw C, Leenhouts F, der Woude FV, Sawatzky GA. J Phys C 8 (1975) 459.
[37] Griffiths CH, Eastwood HK. J Appl Phys, 45 (1974) 2201.
[38] Dai L, Cao CX, Gao YF, Luo HJ. Sol Energy Mater Sol Cells, 95 (2011) 712.
[39] E. V. Babkin, A. A. Charyev, A. P. Dolgarev and H. O. Urinov, Thin Solid Films, 150 (1987) 11-14.
[40] V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskiĭ and F. Silva-Andrade, Tech. Phys., 47 (9) (2002) 1134-1139.
[41] C. C. Fulton, G. Lucovsky and R. J. Nemanich, J. Vac. Sci. Technol. B, 20 (4) (2002) 1726-1731.
[42] Y. Muraoka , Y. Ueda , Z. Hiroi, Journal of physics and chemistry of solids, 63 (2002) 965-967.
[43] J. Livage, G. Guzman, F. Beteille and P. Davidson, J. Sol-Gel Sci. Tech., 8 (1997) 857.
[44] G. V. Jorgensen, J. C. Lee, Solar Energy Mater., 14 (1986) 205.
[45] S. J. Jiang, C. B. Ye, M. S. R. Khan, and C.-G. Granqvist, Applied Optics, 30 (1991) 847-851.
[46] M. Gurvitch, S. Luryi, A. Polyakov, A. Shabalov, M. Dudley, G. Wang, et al., Journal of Applied Physics, 102 (2007) 033504.
[47] ASM Handbook Vol.13 Corrosion", ASM International, 1987.
[48] K. Ali, S. A. Khan, and M. Z. Mat Jafri, International Journal of Electrochemical Science, 9 (2014) 7865-7874.
[49] A. Gentle, A.I. Maaroof, G.B. Smith, Nanotechnology, 18 (2007) 025202.
[50] H.W. Verleur, A.S. Barker, Jr.,C.N. Berglund, Phys. Rev. 172 (1968)788.
[51] M. Losurdo, D. Barreca, G. Bruno, E. Tondello, Thin Solid Films, 384 (2001) 58
[52] L.-J. Meng, R. A. Silva, H.-N. Cui, V. Teixeira, M.P. dos Santos, Z. Xu, Thin Solid Films, 515 (2006) 195
[53] L. Dai, S. Chen, J.-J. Liu, Y.-F. Gao, J.-D. Zhou, Z. Chen, C.-X. Cao, H.-J. Luo, M. Kanehira, Phys. Chem. Chem. Phys., 15 (2013) 11723
[54] M.Gurvitch, S.Luryi, A. Polyakov, A. Shabalov, M. Dudley, G.Wang, S.Ge,V.Yakovlev, J. Appl. Phys., 102 (2007) 033504.
[55] X.-J. Wang, H.-D. Li, Y.-J. Fei, X. Wang, Y.-Y. Xiong, Y.-X. Nie, K.-A. Feng, Appl. Surf. Sci. 177 (2001) 8.
[56] T.D. Manning, I.P. Parkin, R. J.H. Clark, D. Sheel, M.E. Pemble, D. Vernadou, J. Mater. Chem., 12 (2002) 2936
[57] M. Pan, J. Liu, H.-M. Zhong, S.-W. Wang, Z.-F. Li, X.-S. Chen, W. Lu, J. Cryst. Growth 268 (2004) 178.
[58] M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci., 257 (2010) 887.
[59] Y. Zhang, T.-T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.-P. Lu, Prog. Mater Sci., 61 (2014) 1.
[60] Y.-F. Gao, C.-X. Cao, L. Dai, H.-J. Luo, M. Kanehira, Y. Ding, Z.-L. Wang, Energy Environ. Sci., 5 (2012) 8708.
[61] F. Wang, Y. Han, C.-S. Lim, Y.-H. Lu, J. Wang, J. Xu, H.-Y. Chen, C. Zhang, M.-H. Hong, X.-G. Liu, Nature, 463 (2010) 1061.
[62] F.C. Gennari, D.M. Pasquevich, J. Am. Ceram. Soc., 82 (1999) 1915.
[63] E. Strelcov, A. Tselev, I. Ivanov, J.D. Budai, J. Zhang, J.Z. Tischler, I. Kravchenko, S.V. Kalinin, A. Kolmakov, Nano Lett., 12 (2012) 6198.
[64] C. Blauw, F. Leenhouts, F.V. der Woude, G.A. Sawatzky, J.Phys., C 8 (1975) 459.
[65] C.H. Griffiths, H.K. Eastwood, J. Appl. Phys., 45(1974) 2201.
[66] N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Appl. Phys. Lett., 95 (2009) 171909.
[67] T.E. Phillips, R.A. Murphy, T.O. Poehler, Mater. Res. Bull., 22 (1987) 1113.
[68] Y. Muraoka, Z. Hiroi, Appl. Phys. Lett., 80(2002) 583.
[69] F. Béteille, J. Livage, J. Sol-Gel Sci. Technol., 13 (1998) 915.
[70] T.-W. Chiu, K. Tonooka, N. Kikuchi, Thin Solid Films 518 (2010) 7441.
[71] W. Fan, J. Cao, J. Seidel, Y. Gu, J. W. Yim, C. Barrett, K.-M. Yu, J. Ji, R. Ramesh, L.-Q. Chen, J. Wu, Phys. Rev. B, 83 (2011) 235102.
[72] Dai L, Cao CX, Gao YF, Luo HJ. Sol Energy Mater Sol Cells, 95 (2011) 712.
[73] S. Zhou et al., Surface & Coatings Technology, 206 (2012) 2922–2926.
[74] I. Takahashi et al., The Japan Society of Applied Physics, 40 (2001) 1391-1395.
[75] X.-F. Xu et al., Applied Surface Science, 261 (2012) 83–87.
[76] M. Nishikawa et al., Applied Surface Science, 257 (2011) 2643–2646.
[77] M.-P. Jiang et al., Advanced Materials Research, 284-286 (2011) 2177-2181.
[78] T.J. Hanlon et al., Thin Solid Films, 436 (2) (2003) 269-272.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊