跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:角志峰
研究生(外文):Zhi-Feng Jue
論文名稱:聚乙烯-乙烯醇之紡絲與延伸加工研究
論文名稱(外文):Study of melt spinnability and drawing process of ethylene vinyl alcohol (EVOH) copolymers
指導教授:芮祥鵬芮祥鵬引用關係
口試委員:程耀毅張淑美魏騰芳戴子安芮祥鵬
口試日期:2016-07-27
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:應力鬆弛時間蠕變應變率線上延伸應力延伸倍率可紡性熔融紡絲熱穩定性乙烯-乙烯醇
外文關鍵詞:stress relaxation timecreep strainonline draw stressdraw ratiospinnabilitymelt spinningthermal stabilityethylene vinyl-alcohol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於將具有良好生物相容性但不易單成分熔融紡絲之不同乙烯含量32(EV-32)、38(EV-38)及44(EV-44) mol%之聚乙烯-乙烯醇(EVOH)進行可紡性評估,並將紡絲所得到的原絲進行延伸加工及物性分析。NMR分析結果顯示EV-32、EV-38和 EV-44其乙烯含量分別為39、45及50 mol %,ethylene/vinyl alcohol ratio分別為0.64、0.82及1.00。熔點(Tm)與結晶度(Xc)隨乙烯含量的降低而提高,熔點(Tm)與結晶度(Xc)分為EV-32 (178.9℃, 46.6 %) > EV-38 (171.9℃, 41.8 %) > EV-44 (166.0℃, 40.0 %)。熱穩定性能,依序為EV-32 < EV-38 < EV-44。在相同的溫度及剪切速率下,其黏度為EV-32>EV-38>EV-44,EV-44黏流活化能ΔEa遠高於EV-32及EV-38,顯示EV-44對溫度敏感性較強,此外,EV-32、EV-38和 EV-44原絲之拉伸強度及伸度分別為91.6 (205.2 %)、87.4 (202.0 %)和95.9 MPa (180.2 %)。EV-32、EV-38和 EV-44紡絲溫度分別為245、255及265℃,因EV-32紡絲溫度已超過其裂解溫度258℃,故EV-32之可紡性最差。
將EV-32、EV-38和 EV-44之原絲進行延伸溫度最佳化評估,並利用最佳延伸溫度及不同延伸倍率條件下之延伸絲進行相關分析。實驗結果顯示,延伸絲之線上延伸應力隨延伸溫度的升高而變小,在同一延伸溫度下,線上延伸應力隨著乙烯含量增加而提高。在延伸倍率2.0下,延伸絲在延伸溫度80℃時可獲得最佳之物性,在同一延伸溫度時,延伸強度因乙烯含量增加而提高。隨著延伸倍率的增加,纖維線上延伸應力、雙折射率、強度及初始模量相對提高,而Tg及伸度則呈現下降趨勢,Tm則不受影響。其中,在同一延伸倍率下,纖維之線上延伸應力、雙折射率、強度及初始模量隨著乙烯含量增加而提高,而結晶度及Tg則隨著乙烯含量增加而降低。在拉伸力50及100 MPa時,纖維蠕變應變率並未隨著拉伸力的提高而明顯上升,當拉伸力提高至150 MPa時,EV-32、EV-38延伸絲蠕變應變率隨拉伸時間呈現線性增加的趨勢,而EV-44蠕變應變率則僅有微幅增加。在應力鬆弛實驗中,當拉伸率增加時,初始應力也隨之提高,在同一拉伸率下,延伸絲之初始應力及應力鬆弛時間(τ)之大小順序為EV-44
>EV-38>EV-32,顯示EV-44延伸絲受到拉伸時較不易產生變形。隨著拉伸率的增加,延伸絲之彈性回復率也隨之下降。延伸絲之熱水收縮率隨著水浴溫度的升高而增加,在同一熱水溫度下,EV-44耐熱水性是三者之中最佳的。
This study investigates melt spinnability of ethylene vinyl alcohol (EVOH) copolymers with various ethylene contents, which exhibit excellent biocompatibility but cannot easily undergo single-component fiber spinning. The chemical, thermal and rheological properties of EVOH were examined herein. Three EVOH copolymers, EV-32, 38, and 44, with different ratios of ethylene to vinyl alcohol (EV ratio), were used to evaluate the influence of the ratio on melt spinnability. The EV ratios of EV-32, EV-38, and EV-44 examined by NMR were 0.64, 0.82 and 1.0, respectively. The experimental results reveal that the melting temperature (Tm) and crystallinity (Xc) of EVOH decreased in the order, EV-32 (178.9℃, 46.6 %) > EV-38 (171.9℃, 41.8 %) > EV-44 (166.0℃, 40.0 %). The thermal stability, however, increases in the order EV-32 < EV-38 < EV-44. The viscosity decreases in the order EV-32 > EV-38 > EV-44. EV-44 has much higher flow activation energy than EV-32 and EV-38, indicating that it has a temperature sensitivity higher than EV-32 and EV-38. The pellets of EV-32, EV-38 and EV-44 were melt spun. Three as-spun fibers, EV-32, EV-38 and EV-44 have tensile stresses (strain (%) at breaking point) of 91.6 (205.2 %), 87.4 (202.0 %), and 95.9 MPa (180.2 %), respectively. Most importantly, EV-44 can easily be spun at relatively low temperature, 245℃, while the other two, EV-38 and EV-32, can hardly be made on condition that the spinning temperature is higher than 255 and 265℃, respectively. Notably, once the spinning temperature of EVOH polymers was higher than 258℃, the degradation of VA segments would cause fuming and broken filaments to eventually terminate the entire spinning process.
This study investigates the effect of drawing process of ethylene vinyl alcohol (EVOH) fibers on their physical properties. Three different ethylene contents, namely EV-32, EV-38 and EV-44, were used where the ethylene content has the order of EV-44 > EV-38 > EV-32. The result indicates that at the same drawing temperature and draw ratio, the online drawing stress of the fiber with high ethylene content is higher than that with low ethylene content. Moreover, the drawn EVOH fiber, at the drawing temperature of 80℃and the draw ratio of 2.0, exhibits an optimal mechanical property. As the draw ratio increases, the online drawing stress, birefringence and initial modulus increase without surprising. Notably, unlike typical polymeric fibers, the glass transition temperature (Tg) of the drawn EVOH fibers decreases with the draw ratio due to more water being absorbed by thinner fibers within the same amount of samples. The draw ratio was found to have little effect on the melting temperature (Tm). At the same draw ratio, the online drawing stress, birefringence, stress and initial modulus of the fiber EV-44, which has the highest ethylene content, is higher than those of EV-32 and EV-38. The creep strain of the drawn fibers EV-32, EV-38 linearly increase with the drawing time when the applied stress maintains constant, 150 MPa, while insignificant increase is observed for EV-44, suggesting that EV-44 is difficult to deform and has higher size stability. In the stress relaxation test, the elongation increases with the initial stress. At the same elongation %, the initial stress of the drawn fibers has the following trend: EV-44 > EV-38 > EV-32 and the stress relaxation time (τ) has the following trend: EV-44 > EV-38 > EV-32, indicating again that EV-44 is relatively difficult to deform during drawing. As the elongation is increased, the elastic recovery of the drawn fiber is decreased. In the hot water shrinkage experiment indicates that the hot water resistance of EV-44 is the best among the three fibers.
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 研究動機與方法 17
第三章 實驗 18
3.1 實驗材料 18
3.2 實驗儀器 18
3.3 實驗方法 19
3.3.1 FTIR之測量 19
3.3.2 凝膠滲透層析儀(Gel Permeation Chromatography, GPC)之分子量測量 19
3.3.3 NMR分析羥基/乙烯基比值(OH/ethylene ratio) 20
3.3.4 微分掃描熱卡計(DSC)測量 21
3.3.5 TGA測量 21
3.3.6 原料之結晶與乾燥 21
3.3.7 含水率的測量 23
3.3.8 MI測量 25
3.3.9 流變性質測量 26
3.3.10 熔融紡絲加工 27
3.3.11 纖維延伸加工及線上延伸應力測量 30
3.3.12 纖維強伸度測量 34
3.3.13 電子顯微鏡(SEM)測量纖維直徑 34
3.3.14 纖維蠕變測量 35
3.3.15 纖維應力鬆弛測量 36
3.3.16 纖維雙折射率的測定 37
3.3.17 纖維回潮率的測量 40
3.3.18 纖維彈性回復率的測量 40
3.3.19 纖維熱水收縮率(Hot water shrinkage)的測量 41
第四章 結果與討論 43
4.1 EVOH原料之FTIR分析 43
4.2 EVOH原料之GPC測量 43
4.3 EVOH原料之1H NMR分析 44
4.4 EVOH原料之DSC測量 46
4.5 EVOH原料之熱穩定性測量(非等溫TGA) 48
4.6 EVOH原料之熱穩定性測量(等溫TGA) 49
4.7 EVOH原料之MI測量 49
4.8 EVOH原料之熔融粘度測量 51
4.9 EVOH原料之非牛頓指數分析 53
4.10 EVOH原料之黏流活化能分析 54
4.11 EVOH原絲回潮率測量 57
4.12 EVOH原絲物性測量及可紡性評估 57
4.12 EVOH原絲之最佳化延伸溫度評估 59
4.13 EVOH原絲之延伸加工實驗 60
4.14 EVOH延伸絲之蠕變分析 69
4.15 EVOH纖維之應力鬆弛分析 71
4.16 EVOH纖維之彈性回復率測量 74
4.17 EVOH纖維之熱水收縮率測量 76
結論 79
參考文獻 81
1. Foster R. H. Polym. News 1986; 11:264-271.
2. Moroi H. New production technologies and applications of poly(vinyl alcohol)film. British Polymer
Journal 1988; 20:335-343.
3. Péter Zs., Kenyó Cs., Renner K., et al. Decreased oxygen permeability of EVOH through molecular
interactions. eXPRESS Polymer Letters 2014; 8:756-766.
4. Finlayson K. M. Plastic film technology:High barrier plastic film for packaging, technomic publishing co.,
lancaster. PA. 1989.
5. Finch C. A. Polyvinyl Alcohol, John Wiley and Sons, New York 1993.
6. Advani S. G., Shonaike G.O. Advanced polymeric materials:structure property relationships. CRC Press,
Boca Raton 2003.
7. Cabedo L., Lagarón J. M., Cava D., et al. The effect of ethylene content on the interaction between
ethylene-vinyl alcohol copolymers and water (II): Influence of water sorption on the mechanical properties
of EVOH copolymers. Polym. Testing 2006; 25:860-867.
8. Cava D., Cabedo L., Gimenez E., et al. The effect of ethylene content on the interaction between ethylene-
vinyl alcohol copolymers and water:(I) application of FT-IR spectroscopy to determine transport properties
and interactions in food packaging films. Polym.Testing 2006; 25:254-261.
9. Yamamoto T., Nishihara Y. Barrier properties of EVOH at low temperatures and various humidity. Paper
Film and Foil Converter 2001.
10. Muramatsu M., Okura M., Kuboyama K., et al. Oxygen permeability and free volume hole size in
Ethylene-vinyl alcohol copolymer film: Temperature and humidity dependence. Radiation Physics and
Chemistry 2003; 68: 561-564.
11. Zhang Z., Britt I. J., Tung M. A. Permeation of oxygen and water vapor through EVOH films as influenced
by relative humidity. J. of Appl. Polym. Sci. 2001; 82:1866-1872.
12. Mokwena K. K., Tang J., Laborie M. P. Water absorption and oxygen barrier characteristics of ethylene
vinyl alcohol films. J. of Food Eng. 2011; 105:436-443.
13. López-Rubio A., Lagaron J. M., Giménez E., et al. Morphological alterations induced by temperature and humidity in ethylene-vinyl alcohol copolymers. Macromolecules 2003; 36:9467-9476.
14. Dowan K., Hyok K., Jongchul S. EVOH nanocomposite films with enhanced barrier properties under high
humidity conditions. Polymer Composites 2014; 35:644-654.
15. Yamamoto T., Kanda T., Nishihara Y., et al. Correlation study among oxygen permeability, molecular
mobility, and amorphous structure change of poly(ethylene-vinyl alcohol copolymers) by moisture. J. of
Polym. Sci. Part B Polym. Phys. 2009; 47:1181-1191.
16. Lopez-de-Dicastillo C., Alonso J. M., Catala R., et al. Improving the antioxidant protection of packaged
food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J Agric
Food Chem 2010; 58:10958-10964.
17. Kuraray Co., Ltd. Composite fiber:US 6811874 B2, 2004.
18. Homung C. H., Hallmark B., Mackley M. R., et a1. EVOH capillary supported palladium catalyst for flow
transfer hydrogenation . Synfacts 2010; 10:1203-1203
19. Tsuyumoto I., Miura Y., Hori Y. Fire-resistant nonwovens of EVOH and PET treated with amorphous
sodium polyborate. J. Mater Sci. 2010; 45:2504-2509.
20. Kubacka A., Cerrada M. L., Serrano C., et a1. Plasmonic nanoparticle/polymer nanocomposites with
enhanced photocatalytic antimicrobial properties. J. Phys. Chem. C 2009; 113:9182-9190.
21. Ueno M., Katoh S., Jonoshitra Y., et al. Colloid Polym. Sci. 1987; 265:26-30.
22. Agishi T., Yamashitra N., Ozaku Y., et al. Artif. Organs 1979; 3:184-185.
23. Segot-Chicq S., Peppas N. A. J. Controlled Release 1986; 3:193-204.
24. Allcock H. R., Kugel R. L. Synthesis of high polymeric alkoxy and aryloxy phospho nitriles, J. Am. Chem.
Soc. 1965; 87:4216-4217.
25. Blackwell et al. Ethylene vinyl alcohol copolymers. In high performance polymers: Their origin and
development. Proceedings of the symposium on the history of high performance polymers at the american
chemical society meeting, New York 1986; 425-435.
26. Seymour R. B., Kirshenbaum G. S. Properties of polymers: Their correlation with chemical structure:Their
numerical estimation and prediction from additive group contributions. Elsevier, The Netherlands 1990.
27. Brandrup J., Immergut E.H. Polymer Handbook. John Wiley and Sons,Inc., Hobokken, NJ. 1989.
28. Gas barrier properties of EVAL TM Resins. EVAL Americas. Technical Bulletin No. 110.
29. Khanah M. K., Tang J. Ethylene Vinyl Alcohol: A review of barrier properties for packaging shelf stable
foods. Crit. Rev. Food Sci. Nutr. 2012 ;52: 640-650.
30. Alger M. S. M. Polymer Science Dictionary, Elsevier Publishers, Essex, England, 1980; p.157.
31. Zhang Z., Britt I. J., Tung M. A. J. of Polym. Sci. Part B Polym. Phys. 1999; 37:691-699.
32. Aucejo S., Marco C., Gavara R. Water effect on the morphology of EVOH copolymers. J. Appl. Polym.
Sci. 1999; 74:1201-1206.
32. Lagaron J. M., Powell A. K., Bonner G. Permeation of water, methanol, fuel and alcohol containing fuels
in high-barrier ethylene-vinyl alcohol copolymer, Polym. Testing 2001;20:569-577.
33. Szakonyi G., Zelkó R. The effect of water on the solid state characteristics of Pharmaceutical excipients:
molecular mechanisms, measurement techniques, and quality aspects of final dosage form,” International
Journal of Pharmaceutical Investigation 2012; 2:18-25.
34. Blackwell et al. Ethylene vinyl alcohol resin as a barrier material in muti-layer packages, in Plastic Film
Technology, Vol. 1, Finlayson, K.M., Ed., Technomic Publishers,Lancaster, PA, 1989; chap. 5.
35. Seto T., Hara T., Tanaka K. Jpn. J. Appl. Phys. 1968; 7:31-41.
36. Mataumob T., Nakamae K., Oka H., et al. Sen’i Gakkoishi 1975; 35:T-152.
37. Nakamae K., Kameyama M., Matsumoto T. Elastic moduli of the crystalline regions in the direction
perpendicular to the chain axis of ethylene vinyl alcohol copolymers. Polym. Eng. Sci. 1979; 19:572-578.
38. Susana A., Carlos M., Rafael G. Water effect on the morphology of EVOH copolymers. J. of Appl. Polym. Sci. 1999; 74:1201-1206.
39. Cerrada M.L., Perez E., Perena J. M., et al. Wide-angle x-ray diffraction study of the phase behavior of
vinyl alcohol-ethylene copolymers. Macromolecules 1998; 31:2559-2564.
40. Alvarez V. A., Kenny J. M., Vazquez A. Isothermal crystallization of poly(vinyl alcohol-co-ethylene). J.
of Appl. Polym. Sci. 2003; 89:1071-1077.
41. Rwei S. P., Jue Z. F., Chen F. L. PBT/PET Conjugated fibers: Melt spinning, fiber properties,and thermal
bonding. Polym. Eng. Sci. 2004; 44:331-344.
42. El-Salmawy A., Kimura Y. Structure and properties of bicomponent core-sheath fibers from poly(ethy1ene
terephthalate) and biodegradable aliphatic Polyesters.Textile Res. J. 2001; 71(2):145-152.
43. Salehi-Mobarakeh H. et al. Polyamide grafting onto ethylene-vinyl alcohol copolymer. J. Polym. Eng. 2013; 33(9):843-850
44. Jiao J., Wang S. J., Xiao M., et al. Processability, property, and morphology of biodegradable blends of
poly(propylene carbonate) and poly(ethylene-co-vinyl alcohol). Polym. Eng. Sci. 2007; 47:174-180.
45. Hitoshi N. EVOH fiber 「Sophista」. SEN’I GAKKAISHI 2009; 65:No.9.
46. Yokoyama Y., Kimata H., Mitarai S., et al. Ethylene vinyl alcohol(EVOH) fiber compared to cotton
underwear in the treatment of childhood atopic dermatitis: a double-blind randomized study. Indian
Pediatr 2009; 46(7):611-614.
47. Francesco B., Anika F., Theonis R. Determination of the elongational viscosity of polymer melts by melt
spinning experiments. A comparison with different experimental techniques. Rheol. Acta 2007; 46:965-
978
48. Vishwa P. S., Vimal K. K., Kapur G. S., et al. High-density polyethylene/halloysite nanocomposites:
morphology and rheological behaviour under extensionaland shear flow. J. Polym. Res. 2016; 23: 1-17.
49. Faisant J. B., Ait-Kadi A., Bousmina M., et al. Morphology, thermomechanical and barrier properties of
polypropylene-ethylene vinyl alcohol blends. Polymer 1998; 39:533-545.
50. Bershitan V., Egorov V. Differential scanning calorimetry of polymers. Ellis Horwood: Chichester, UK
1994.
51. Rwei S. P., Lin Y. T., Su Y. Y. Investigation on the spinnability of metallocene cyclicolefins copolymer
melt.Textile Res. J.2012; 82: 315-323.
52. Rwei S. P., Jue Z. F., Chiang W. Y., et al. Characterization of melt spinnability of ethylene vinyl alcohol copolymers. Textile Res. J. 2016; 86: 1191-1201.
53. Houshyar S., Shanks R. A., Hodzic A. Tensile creep behaviour of polypropylene fibre reinforced
polypropylene composites. Polym. Testing 2005; 24: 257-264.
54. Subrata P., Subrata S. Stress relaxation and creep behaviour of normal and carbon fibre reinforced acrylic
bone cement. Biomaterials 1982; 3: 93-96.
55. Ek C. G., Kubát J., Rigdahl M. Stress relaxation, creep, and internal stresses in high density polyethylene
filled with calcium carbonate. Rheol. Acta 1987; 22: 55-63.
56. Joye D. D. Stress-relaxation in three-element and four-element mechanical models of viscoelastic
materials. J. of Appl. Polym. Sci. 1993; 47: 345-350.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top