(3.238.235.155) 您好!臺灣時間:2021/05/16 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:盧松甫
研究生(外文):Sung-Fu Lu
論文名稱:利用混合溶劑合成硒化鎳取代染料敏化太陽能電池之對電極
論文名稱(外文):Using the mixed solvents to synthesis Nickel selenide used as counter electrode in dye-sensitized solar cells
指導教授:段業芳
指導教授(外文):Yeh-Fang Duann
口試委員:楊勝俊陳宏亦秦建譜林岩錫
口試日期:2016-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:混合溶劑熱液法硒化鎳染料敏化太陽能電池
外文關鍵詞:mixed solventsSolvothermalNickel selenidedye-sensitized solar cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用混合溶劑合成硒化鎳來取代染料敏化太陽能電池的白金對電極,硒化鎳在當作染敏太陽能電池的對電極材料時具有許多優點,如低成本、製成容易、材料取得容易。本研究使用熱液法進行合成,並在混合溶劑中利用不同的製程參數條件,分析鑑定硒化鎳的結構與外觀,包含SEM、XRD、EDS、AFM,並實際組裝成太陽能電池測試效率η、EIS、CV,對電極的實驗對照組為Pt,工作電極使用TiO2,染料使用N-719,電解液為I-/I3-系統。
另外在乙二胺與聯胺混合溶劑之外,也改變使用甲醇與聯胺做為混合溶劑,期待在極性大的環境下能夠提升硒化鎳的成核效果。
結果來說,白金對電極的光電效率為4.79%,在乙二胺和聯胺混合溶劑合成的硒化鎳光電效率為4.11%,甲醇和聯胺混和溶劑合成的硒化鎳光電效率為4.496%。雖然硒化鎳的光電效率仍比白金稍低。但是白金是貴金屬,成本也相對較高。因此,硒化鎳仍然是一個有潛力又便宜的DSSC對電極材料。
Nickel selenide nanoparticles have many advantages as counter electrode. Such as the abundances of their constituting elements, low cost and simple. In this study, we use solvothermal method to synthesize the Nickel selenide nanoparticles, and characterize by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), atomic force microscope (AFM), and assemble into dye sensitized solar cells (DSSCs).DSSCs measure electrochemical properties by solar simulator, electrochemical impedance spectroscopy (EIS) and cyclic voltage (CV). Typically, the photoanode use TiO2 with photosensitize dye N-719, the liquid electrolyte is I-/I3- electrochemical system. In comparison, Pt counter electrode is used and prepared by Sputter deposition.
In addition, the mixed solvents change into Methanol and hydrazine synthesis Nickel selenide. We expected it can improve nucleation and increase the cell efficiency.
The results showed that the efficiency of Pt was 4.79%, mixed solvents which Ethylenediamine and hydrazine synthesis Nickel selenide was 4.11%, mixed solvents which Methanol and hydrazine synthesis Nickel selenide was 4.496%. The efficiency of Nickel selenide still lower than Pt. However Pt is a noble metal. Therefore, Nickel selenide can be potentially used as a counter electrode material for DSSCs.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
1.3 研究背景與目的 7
第二章 文獻回顧 8
2.1 染料敏化太陽能電池簡介 8
2.1.1 染料敏化太陽能電池之結構 8
2.1.2 染料敏化太陽能電池光電轉換評價性能參數 10
2.1.2.1 短路電流Isc 10
2.1.2.2 開路電壓Voc 11
2.1.2.3 充填因子FF 11
2.1.2.4 電池總效率η (efficiency) 11
2.1.2.5 電化學阻抗量測 EIS 12
2.2 二氧化鈦(Titanium dioxide, TiO2) 14
2.3 硒化鎳(Nickel selenide) 18
2.4 染料敏化太陽能電池的組成結構 18
2.4.1 半導體工作電極 19
2.4.2 有機金屬染料 19
2.4.3 氧化還原電解質 21
2.4.4 對電極 22
2.5 降低染料敏化太陽能電池效率的因素 24
第三章 實驗設備和步驟 26
3.1 實驗藥品 26
3.2 實驗流程 29
3.2.1 合成硒化鎳對電極材料 29
3.2.2 染料敏化太陽能電池之製備[37-41] 29
3.2.2.1 FTO玻璃清洗 29
3.2.2.2 TiO2工作電極薄膜的製備 30
3.2.2.3 對電極製備 30
3.2.2.4 電解液配置 32
3.2.2.5 染料敏化太陽能電池組裝 32
3.3 儀器介紹 33
3.3.1掃描式電子顯微鏡(Scanning Electron Microscopy;SEM) 33
3.3.2 能量色散光譜儀(Energy-dispersive spectroscopy;EDS) 34
3.3.3 X光繞射分析儀(X-ray Diffraction;XRD) 34
3.3.4 原子力顯微鏡(atomic force microscope, AFM)[45-46] 35
3.3.5 電池性能測試 35
3.3.6 恆電位儀 36
第四章 結果與討論 37
4.1 鎳與硒的進料比例分析 37
4.1.1掃描式電子顯微鏡 37
4.1.2能量色散光譜儀 38
4.1.3X光繞射分析儀 40
4.1.4光電效率測試 42
4.1.5交流阻抗分析 43
4.2聯胺與乙二胺的溶劑比例分析 45
4.2.1掃描式電子顯微鏡 45
4.2.2能量色散光譜儀 46
4.2.3X光繞射分析儀 48
4.2.4光電效率測試 49
4.2.5交流阻抗分析 50
4.3進料濃度分析 51
4.3.1掃描式電子顯微鏡 51
4.3.2能量色散光譜儀 52
4.3.3 X光繞射分析儀 55
4.3.4光電效率測試 57
4.3.5交流阻抗分析 58
4.4溫度分析 59
4.4.1掃描式電子顯微鏡 59
4.4.2能量色散光譜儀 62
4.4.3 X光繞射分析儀 66
4.4.4光電效率測試 69
4.4.5交流阻抗分析 71
4.5混合溶劑替換分析 73
4.5.1掃描式電子顯微鏡 73
4.5.2能量色散光譜儀 75
4.5.3 X光繞射分析儀 77
4.5.4光電效率測試 81
4.5.5交流阻抗分析 82
4.6整體比較 83
4.6.1 粒徑大小比較 83
4.6.2對電極表面形態分析 84
4.6.3循環伏安法(CV)測試比較 86
4.6.4光電效率與交流阻抗比較 88
第五章 結論 90
參考文獻 91
1.O’Regan, M and Grätzel, Nature, no.353, 1991, pp.737.
2.M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Valchopoulos, M. Grätzel, J. Am. Chem. Soc, no.115, 1993, pp.6382.
3.日本特許廳總務部技術調查課,2006。
4.M. Grätzel, J. Photochem, Photobio. A., no.164, 2004 , pp.3.
5.Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, Langmuir, no.19, 2003, pp.3572.
6.Park, N.-G. L., J. v. d.; Frank, A. J., J. Phys. Chem. B, no.104, 2000, pp.8989-8994.
7.J. R. Macdonald, and W. R. Kenan, Impedance Spectroscopy, 1987.
8.Park, N.-G., Van De Lagemaat, J., Frank, A.J., "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,"Journal of Physical Chemistry B,no.104,2000,pp8989-8994.
9.Hanaor, D. H. and C. Sorrell (2011). "Review of the anatase to rutile phase transformation." Journal of Materials Science 46(4): 855-874.T. Maeda, S. Nakamura and T. Wada, Phase stability and electronic structure of In-free photovoltaic semiconductors Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation, Materials Research Society (2009).
10.Zhongbin Zhuang, Qing Peng Jing Zhuang, Xun Wang, Yadong Li "Controlled Hydrothermal Synthesis and Structural Characterization of a Nickel Selenide Series" Chemistry - A European Journal 2005, Volume 12, pp.211–217.
11.Nosipho Moloto, Makwena J. Moloto, Neil J. Coville, Suprakas Sinha Ray" Synthesis and characterization of nickel selenide nanoparticles: size and shape determining parameters" Journal of Crystal Growth Volume 324, Issue 1, 2011, pp 41–52.
12.Azam Sobhani, Masoud Salavati-Niasari "Synthesis and characterization of a nickel selenide series via a hydrothermal process" Superlattices and Microstructures Volume 65,2014, pp 79–90.
13.N. Moloto, M.J. Moloto , N.J. Coville, S. Sinha Ray "Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods" Journal of Crystal GrowthVolume 311, Issue 15,,2009, pp.3924–3932.
14.Bin Li, Yi Xie ,Jiaxing Huang, Huilan Su, Yitai Qian "Solvothermal synthesis to NiE2 (E = Se, Te) nanorods at low temperature" Volume 11, Issue 8,1999, pp1067–1071.
15.Dinah Punnoose, Hee-Je Kim, CH.S.S. Pavan Kumar, S. Srinivasa Rao, Chandu V.V.M. Gopi, Sang-Hwa Chung "Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells" Volume 306, 2015, pp 41–46.
16.Xiaohe Liua, Ning Zhang, Ran Yi, Guanzhou Qiu, Aiguo Yan, Hongyi Wu, Dapeng Meng, Motang Tang "Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals" Materials Science and Engineering: B Volume 140, Issues 1–2, 2007, pp 38–43.
17.A. Hagfeldt and M. Grätzel, Chem. Re, no.95, 1995, pp.49–68.
18.A.Giraudeau,F.-R.F.Fan,A.J.Bard,J.Am.Chem,no.99,1995,pp12902-12906.
19.I.Bedjat, P.V.Kamat, J.Phys.Chem, no.99, 1995, pp.9182-9188.
20.R.W.Fessenden, P.V.Kamat, J.Phys.Chem, no.99, 1995, pp.12902-12906.
21.P.D.Cozzoli,R.Comparelli,E.Fanizza,M.L.Curri,A.Agostiano,D.Laub,J.Am.Chem.Soc,no.126,2004,pp.3868-3879.
22.Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., Madras, G.. "Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity,"Langmuir,no.20.2004,pp.2900-2907.
23.Grätzel, M., "Photoelectrochemical cells,"Nature,no.414,2004,pp.338-344.
24.Hagfeld, A., Grätzel, M., "Light-induced redox reactions in nanocrystalline systems,"Chemical Reviews,no.95,1995,pp.49-68.
25.張芳碩,染料敏化二氧化鈦光電化學太陽能電池研究,碩士論文,2003/07
26.G.Schlichthorl, S.Y.Huang,J.Sprague and A.J.Frank,Band Edge
27.K.Schwarzburg and F.J.Willig,J.Phys.Chem,B,no.103,1999,pp.5743
28.Md.K.Nazeeruddin,R.Humphry-Baker,P.Liska,and M.Gratzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell" J.Phys.Chem.B.107,2003,pp 8981-8987
29.G.Boschloo, L.A.Hagfeldt, ‘’Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cell’’,J.Phys.Chem.B 110,2006,13144-13150.
30.G.Redmond,D.Fitzmaurice, ‘’Spectroscopic Determination of Flatband Potentials for Polycrystalline TiO2 Electrodes in Nanoqueous Solvets’’ J.Phy.Chem.97, 1993, pp1426-1430.
31.M. Grätzel, Current Opinion in Colloid and Interface Science, no.4, 1999, pp.314–321.
32.Cahen et al., J.Phys.Chem. B, no.104, 2000, pp.2053–2059.
33.A. Fujishima et al., Sol. Energy Mater. Sol. Cells, no.81, 2004, pp.197–203.
34.Shogo Nakade, Yohei Makimoto, Wataru Kubo, Takayuki Kitamur, Yuji Wada,and Shozo Yanagida, J. Phys, Chem. B, no.109, 2005, pp.3480–3487.
35.L. Brus, Phys. Rev. B﹐no.53, 1996, pp.4649–4656.
36.Cahen et al., J. Phys. Chem. B, no.104, 2000, pp.2053–2059.
37.李東霖,官能化石墨烯與PEDOT-PSS複合薄膜製備及應用於染料敏化太陽能電池,碩士論文,國立台北科技大學,台北市,2013。
38.許芷瑄,以多壁奈米碳管及石墨烯修飾TiO2奈米顆粒製備光電極應用於染料敏化太陽能電池,碩士論文,國立台北科技大學,台北市,2011。
39.高振凱,有機高分子材料改質及其在染料敏化太陽能電池的應用,碩士論文,國立台北科技大學,台北市,2009。
40.李姿慧,染料敏化太陽能電池電解液及對電極之研究,碩士論文,國立台北科技大學,台北市,2009。
41.柯志業,合成CZTS_CZTSe低成本對電極並應用於染料敏化太陽能電池,碩士論文,國立台北科技大學,台北市,2015。
42.Zubin Wang, Qunwei Tang, Benlin He ,Xiaoxu Chen,Haiyan Chen‘’Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest’’, JOURNAL OF POWER SOURCES,2015,175-180.
43.K. Manoharan, P. Venkatachalam ‘’Photoelectrochemical performance of dye sensitized solar cells based on aluminum-doped titanium dioxide structures’’ Materials Science in Semiconductor Processing, Volume 30, 2015, pp 208–217.
44.D. Maheswari, P. Venkatachalam ‘’Enhancing the performance of dye-sensitized solar cells based on organic dye sensitized TiO2 nanoparticles/nanowires composite photoanodes with ionic liquid electrolyte’’ ,Measurement, Volume 60, 2015, pp 146–154.
45.K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and John M. Martinis ‘’Conducting atomic force microscopy for nanoscale tunnel barrier characterization’’, REVIEW OF SCIENTIFIC INSTRUMENTS, VOLUME 75, NUMBER 8,2004,pp2726-2731.
46.Franz J. Giessibl ‘’Advances in atomic force microscopy’’, REVIEWS OF MODERN PHYSICS, VOLUME 75, 2003,pp 949-983.
47.Chen, S, Zeng, K, Song, Y, Li, H, Liu, P, Li, F.’’ Systematical shape evolution of hexagonal NiSe crystals caused by mixed solvents and ammonium chloride’’, Journal of Crystal Growth, Volume 358, 2012, pp 57-63.
48.Feng Gong, Hong Wang, Xin Xu, Gang Zhou, and Zhong-Sheng Wang ‘’In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells’’ J. Am. Chem. Soc., 2012, 134 , pp 10953–10958.
49.L. Han, N. Koide, Y. Chiba, and T. Mitate, Applied Physics Letters, on.84, 2004,pp.2433.
50.Gong F, Xu X, Li Z, Zhou G, Wang ZS. ‘’NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells.’’ Chem Commun (Camb). 2013 ,1437-9.
51.Lee, C.-T., Peng, J.-D., Li, C.-T., Tsai, Y.-L, Vittal, R., Ho, K.-C. ‘’Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells’’ Nano Energy, Volume 10, 2014, pp 201-211.
52.Azam Sobhani, Fatemeh Davar, Masoud Salavati-Niasari‘’Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB’’ Applied Surface Science, Volume 257, 2011,pp 7982–7987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top