(35.175.212.130) 您好!臺灣時間:2021/05/17 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊政祐
研究生(外文):Cheng-Yu Yang
論文名稱:利用奈米碳材料結合奈米金屬應用於生物感測器與綠色能源技術
論文名稱(外文):Fabrication of Carbon Nanomaterial Based Composites for Application to Biosensors and Energy Devices
指導教授:陳生明
指導教授(外文):Shen-Ming Chen
口試委員:陳生明陳慶國鍾仁傑曾添文呂光烈駱碧秀
口試委員(外文):Shen-Ming ChenChing-Kuo ChenRen-Jei ChungTian-Mun TsengKuang-Lieh LuBih-Show Lou
口試日期:2016-07-01
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:多層耐米碳管、葡萄糖感測器、氧氣感測器、白金、金、銀、奈米粒子、奈米碳管
外文關鍵詞:Glucose sensorOxygen sensorPlatinumSilvergoldNanoparticlesCarbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
第一部分:此部分的實驗成功的利用電化學沉積法治備奈米白金粒子與奈米銀粒子結合多層奈米碳管(PtAg/MWCNTs)發展出非酵素型的葡萄糖感測器。實驗中,我們利用X-射線繞射分析(XRD)與原子力顯微鏡(AFM)探討與分析奈米白金粒子與奈米銀粒子與多層奈米碳管的結合型態之分析。此次實驗設計為在中性條件下對葡萄糖溶液做及時偵測分析,可發現PtAg/MWCMTs/GCE修飾電極對葡萄糖有良好的偵測性,其工作電位為-0.35V (Ag/AgCl)並且相較於Pt/MWCNTs/GCE與Ag/NWCNT/GCE修飾電極有著2.5-20倍高的氧化電流表現,並且其靈敏度為115.8 A mM-1 cm-2,偵測範圍為1-25mM。此修飾電極提供了較低的工作電位與表現了極佳的靈敏度並且製備方法簡單且快速與具備低成本的良好特性。

第二部分:此部分的研究中利用電化學沉積法將濃度比為2:8的H2PtCl6與HAuCl4製備奈米白金粒子與奈米金粒子結合多層奈米碳管(PtAu/MWCNT)高效能型亞硝酸鹽感測器。此部分研究的表面分析與元素分析是利用SEM與XRD來進行表面與特性分析。而計時安培法則使用於靈敏度測試、干擾性測試,穩定性測試與回收率測試。其所得到的靈敏度為1186.5AmM-1cm-2,偵測線性範圍是0.2M-4.85mM,偵測極限為0.09M。

第三部分:此部分的研究利用電化學沉積法將HAuCl4製備奈米金粒子並且結合多層奈米碳管(Au/MWCNT)製備出氧氣感測器。此部分研究的表面分析與元素分析是利用SEM與XRD來進行特性分析。並且利用旋轉圜碟電極法來進行靈敏度分析(195.5 ALmg-1cm-2)。

第四部分:此部分的研究利用電化學沉積法將HAuCl4製備奈米金粒子並且結合多層奈米碳管(Au/MWCNT)製備出氧氣工作陰極。此外再將葡萄糖氧化酵素塗抹於Au/MWCNT電極表面成為對葡萄糖具靈敏性的工作陽極。此部分研究的表面分析與元素分析是利用SEM與XRD來進行特性分析。並且利用線性伏安法與計時安培法來進行陽極與陰極的靈敏度分析(281.86 AmM-1cm-2 and 195.5 ALmg-1cm-2)。並將兩功能不同之電極放置於燃料電池裝置中可得到良好的發電效率 (22.6W)。

第五部分:此部分的研究利用電化學沉積法製備奈米釕粒子與奈米白金粒子並且結合導電高分子 poly(3,4-ethylenedioxythiophene) (PEDOT)製備出Dye-Sensitized Solar Cells之工作陰極。此部分研究的表面分析與元素分析是利用AFM與XRD來進行特性分析。並將此工作陰極置入太陽能裝置中觀察其與電解質(I3-/I-)之間的反應性來判定工作陰極之效率。
Part I:
Novel platinum and silver decorated multi-walled carbon nanotubes (PtAg/MWCNTs) have been successfully prepared on electrode surface for nonenzymatic glucose detection. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses reveal that the Pt and Ag NPs were successfully deposited on the MWCNTs in this hybrid composite. In neutral condition, the electrode shows good activity towards glucose oxidation with low overpotential (-0.35 V vs. Ag/AgCl) and a current response that is 2.5–20 times greater than that obtained using Pt/MWCNTs/GCE and Ag/MWCNT/GCE. The optimised condition based on current response is found at pH 1. Voltammograms indicate a linear range of 1–25 mM with sensitivity of 115.8 μA mM-1 cm-2. This electrode can effectively analyse glucose concentration in bovine serum albumin samples. It shows advantages with low overpotential, high sensitivity, good stability, and low cost.
Part II:
In the present work, we report the amperometric detection of nitrite using the composite of PtAu nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) modified electrode. The PtAu/MWCNTs composite was prepared by simultaneous electrochemical deposition of Pt and Au nanoparticles on MWCNTs electrode surface using 2 mM of H2PtCl6 and 8 mM HAuCl4 mixed solutions as precursors. The surface morphology of the fabricated composite modified electrode was characterized by the scanning electron microscopy. The PtAu/MWCNTs composite modified electrode shows an enhanced catalytic activity towards nitrite when compared to the response observed for Pt and Au modified MWCNTs modified electrodes. Under optimum conditions, the fabricated PtAu/MWCNTs composite modified electrode shows a stable amperometric response for nitrite in the linear response ranging from 0.2 μM to 4.85 mM with the sensitivity of 1186.3 μA mM-1 cm-2. The PtAu/MWCNTs composite modified electrode shows quick response time (5s), low limit of detection (0.09 μM) and high selectivity for the detection of nitrite.











Part III:
The gold nanoparticles (Au) and functionalized carbon nanotube (MWCNTs) film (Au/MWCNTs) was prepared on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The electrochemical measurements and surface morphology of the as prepared films were studied using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The proposed film were demonstrated for the determination of dissolved oxygen using cyclic voltammetry and rotating disk electrode voltammetry. The electrocatalytic reduction of dissolved oxygen at bare GCE, MWCNTs, Au and Au/MWCNTs modified electrodes, were determined in 0.1 M pH 7 phosphate buffer solution. The dissolved oxygen electrochemical sensor exhibits a well linear response range (from 0 to 50 mg/L, R2 = 0.9988), lowest detection limit (0.1 mg/L), high sensitivity (196.5A L mg-1 cm-2) and the relative standard deviation (RSD) for determining dissolved oxygen (n = 3) was 3.8%. For the determination of dissolved oxygen, the Au/MWCNTs film modified GCE shows on lowest over-potential at -0.17 V. In addition, the proposed film also exhibit excellent stability and specificity.















Part IV:
The gold nanoparticles (Au) and functionalized carbon nanotube (MWCNTs) film (Au/MWCNTs) was prepared on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The glucose oxidase (GOx) was physical adsorbed on the Au/MWCNTs film surface. The electrochemical measurements and surface morphology of the as-prepared films were studied using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The proposed film were demonstrated for the determination of dissolved oxygen using linear sweep voltammetry (LSV) and rotating disk electrode voltammetry (RDE). The proposed electrodes for the construction of biofuel cell (BFC) was achieved up to 22.6W cm-2, and worked well as a biosensor for both glucose and dissolved oxygen with high sensitivity of 281.86 A mM−1 cm−2 and 205.73A L mg−1 cm−2, respectively. The proposed protocol for synthesizing the GOx/ Au/MWCNTs bionanocomposite is simple, convenient and fast in operation, which is expected to find wide biosensing and bioelectronic applications.
中文摘要 iv
英文摘要 vi
致謝 xi
Contents xii
Chapter 1 1
1.1 Introduction 1
1.1.1 Electrochemical sensors and biosensors 1
1.1.2 Direct electrochemistry of glucose biosensor at nonenzymatic based metal material composite 2
1.1.3 Dye sensitized solar cell background 3
1.1.4 Dye sensitized solar cell operation 5
1.1.5 Biofuel cells 7
1.1.6 Nanomaterials 7
1.1.7 Multiwall Carbon Nanotubes (MWCNTs) 8
1.2 Instrumental techniques 8
Chapter 2 10
2.1. Intorduction 10
2.2 Experimental 11
2.2.1 Reagents 11
2.3 Results and Discussion 13
2.3.1 Characterisation of the PtAg/MWCNTs nanocomposite 13
2.3.2 Electrocatalysis of glucose at the PtAg/MWCNTs electrode 16
2.3.3 Differential pulse voltammograms of PtAg/MWCNT electrode to glucose 21
2.4 Conclusions 22
Chapter 3 25
3.1 Introduction 25
3.2 Experimental 26
3.2.1 Reagents 26
3.2.2 Apparatus and measurements 26
3.2.3 Preparation of the MWCNT/PtAu composite modified electrode 27
3.3 Results and Discussion 28
3.3.1 Electrochemical preparation of MWCNT/PtAu composite 28
3.3.2 Characterizations 30
3.3.3 Electrocatalytic oxidation of nitrite at PtAu MWCNT electrode 31
3.3.4 Amperometric determination of nitrite 34
3.4 Conclusions 38
Chapter 4 39
4.1 Introduction 39
4.2 Experimental 40
4.2.1 Reagents 40
4.3.2 FE-SEM and XRD Analysis of Various Film 43
4.3.3 EIS Analysis and pH effect of Various Film 46
4.3.4 Electrocatalytic Properties of GNP-f-CNT Film 48
4.4 Conclusion 55
Chaper 5 56
5.1 Introduction 56
5.2 Experimental 57
5.2.1 Reagents 57
5.2.2 Apparatus 58
5.3 Results and Discussion 59
5.3.1 FE-SEM and XRD Analysis of Various Film 59
5.3.2 Electrochemical Oxidation to glucose on GOx/GNT-f-CNT Film 60
5.3.3 Electrochemical Reduction to Dissolved Oxygen on Au/MWCNTs Film 62
5.3.4 The performance of the assembled glucose/O2 biofuel cell 64
5.4 Conclusion 66
Chapter 6 68
6.1 Introduction 68
6.2 Exprimental 69
6.2.1 Materials and chemicals 69
6.2.2 Apparatus 70
6.2.3 Preparation of Photoanode and Photocathode 70
6.3 Results and Discussion 71
6.3.1 Surface morphology and XRD analysis of various counter electrodes 71
6.3.2 Electrocatalytic activity of various electrode 75
6.3.3 Photoelectric performances of DSSCs 77
6.4 Conclusion 78
Reference 80
List of publication 95
[1]Jr.L. Clark, C. Lyons, Ann. NY acad., 102 (1962) 29.
[2]E. Bakker, Analytical Chemistry., 76 (2004) 3285.
[3]D. Grieshaber, R. MacKenzie, J.Voros and E. Reimhult, Sensors., 8 (2008) 1400.
[4]D.R. Thevenot, K. Toth, R. A. Durst and G. S. Wilson, Biosens. Bioelectron., 16 (2001) 121.
[5]Y. Sun, H. Buck, T.E. Mallouk, Anal. Chem., 73 (2001) 1599.
[6]C.C. Mayorga-Martinez, M. Guix, R.E. Madrid, A. Merkoçi, Chem. Commun., 48 (2012) 1686.
[7]J. Zhao, L.M. Wei, C.H. Peng, Y.J. Su, Z. Yang, L.Y. Zhang, H. Wei, Y.F. Zhang, Biosens. Bioelectron., 47 (2013) 86.
[8]G.M. Wang, X.H. Lu, T. Zhai, Y.C. Ling, H.Y. Wang, Y.X. Tong, Y. Li, Nanoscale., 4 (2012) 3123.
[9]M.R. Guascito, D. Chirizzi, C. Malitesta, M. Siciliano, T. Siciliano, A. Tepore, Electrochem. Commun., 22 (2012) 45.
[10]J. Yang, W.D. Zhang, S. Gunasekaran, Biosens. Bioelectron., 26 (2010) 279.
[11]M.M. Liu, R. Liu, W. Chen, Biosens. Bioelectron., 45 (2013) 206.
[12]S. Park, H. Boo, T. Chung, Anal. Chim. Acta., 556 (2006) 46.
[13]I. Yeo, D. Johnson, J. Electroanal. Chem., 484 (2000) 157.
[14]N. Quoc Dung, D. Patil, H. Jung, D. Kim, Biosens. Bioelectron., 42(2013) 280.
[15]F. Meng, W. Shi, Y. Sun, X. Zhu, G. Wu, C. Ruan, X. Liu, D. Ge, Biosens. Bioelectron., 42 (2013) 141.
[16]M. Liu, R. Liu, W. Chen, Biosens. Bioelectron., 45 (2013) 206–212.
[17]S. Meher, G. Rao, Nanoscale., 5 (2013) 2089.
[18]X. Li, J. Yu, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, Y. Zhang, Sens. Actuators B., 181 (2013) 501.
[19]Y. Hu, Q. Shao, P. Wu, H. Zhang, C. Cai, Electrochem. Commun., 18 (2012) 96.
[20]L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, Y.X. Tong, J. Am. Chem. Soc., 134 (2012) 5730.
[21]C. Xu, Y. Liu, F. Su, A. Liu, H. Qiu, Biosens. Bioelectron., 27 (2011) 160.
[22]F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron., 24(2009) 3481.
[23]X. Che, R. Yuan, Y. Chai, J. Li, Z. Song, W. Li, X. Zhong, Colloids Surf. B., 84 (2011) 454.
[24]J. Wang, D. Thomas, A. Chen, Anal. Chem., 80 (2008) 997.
[25]S. Park, R.A. Jeong, H. Boo, J. Park, H.C. Kim, T.D. Chung, Biosens. Bioelectron., 31 (2012) 284.
[26]M. Pasta, F. La Mantia, Y. Cui, Electrochim. Acta., 55 (2010) 5561.
[27]C.X. Wang, L.W. Yin, L.Y. Zhang, R. Gao, J. Phys. Chem. C., 114 (2010) 4408.
[28]J.P. Wang, D.F. Thomas, A.C. Chen, Anal. Chem., 80 (2008) 997.
[29]West Proceedings of Vogel Centennial Symposium. Photographic Science and Engineering 1974.
[30]B. O’Regan, M. Grätzel, Nature, 40 (19910 353.
[31]M.D. Archer, A.J. Nozik, Nanostructured and photot electrochemical systems for solar photon conversion. Imperial Colleege Press; London, UK, 2008.
[32]N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Z, J. Phys. Chem, 101 (1997) 9342.
[33]G.P. Smestad, Sol. Ener. Mater. Sol. Cells, 55 (1998) 157.
[34]F.O. Lenzmann, J. M. Kroon, Adv. Optoelectronics, 1 (2007) 27
[35]D. Matthews, P. Infelta, M. Grätzel, Sol. Ener. Mater. Sol. Cells, 44(1996) 119.
[36]X. Li, L. Zhang, L.Su, T.Ohsaka, L. Mao, Fuel Cells, 9 (2009) 85.
[37]A.T. Yahiro, S. M. Lee, F.O. Kimble, Biochim. Niophys. Acta, 88 (1964) 375.
[38]S.C. Barton, J, Gallaway, P. Atanassov, Chem. Rev., 104(2004) 4867.
[39]J. Sun, Y. Hu, Z. Bi, Y. Cao, J. power Sources, 187 (2009) 471.
[40]M. Zhou, N. Zhou, F. Kuralay, J.R. Windmiller, S. Parkhomovsky, G.V. Ramirez, E. Katz, J. Wang, Angew. Chem. Int. ED., 15 (2012) 2686.
[41]M. Zhou, F. Kuralay, J.R. Windmiller, J. Wang, Chem. Commun., 48 (2012) 3815.
[42]A. Zebda, L. Renaud, M. Cretin, C. Innocent, R. Ferrigno, S. Tingry, Sens. Actuators, B, 149 (2010) 44.
[43]H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura, K. K, Energy Environ. Sci., 2 (2009) 133.
[44]R. A. Bullen, T. C. Arnot, J.B. Lakemanc, F. C. Walsh, Biosens. Bioelectron., 21 (2006) 2015.
[45]M.C. Daniel, D.Astruc, Chem.Rev., 104 (2004) 294.
[46]M. A. El-sayed, Acc. Chem.Res., 34 (2001) 257.
[47]C.A. Mirkin, R. L. Lestinger, R. C. Mucic, J.J. Storhoff, Nature., 382 (1996) 607.
[48]J. Kim, S. Cha, K. Shin, J. Y. Jho, J. C. Lee, Adv. Mater., 16 (2004) 459.
[49]C. J. Murphy, N.R. Jana, Adv. Mater., 14 (2002) 80.
[50]E. Hao, K. L. K, J. T. H, G. C. S, J. Am. Chem. Soc., 124 (2002) 15182.
[51]Y. G. Sun, Y. N. Xia, Adv. Mater., 15 (2003) 695.
[52]T. K. Sau, C. J. Murphy, J. Am. Chem. Soc., 126 (2004) 8648.
[53]S. H. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, J. Am. Chem. Soc., 125 (2003) 16186.
[54]H. Zhu, J. Wei, K. Wang and D. Wu, Sol. Energy Mater. Sol. Cells., 93 (2009) 1461.
[55]X. Hu, K. Huang, D. Fang and S. Liu, Materials Science and Engineering B., 176 (2011) 431.
[56]Y. S. Park and H. K. Kim, Current Applied Physics., 11 (2011) 989.
[57]E. Ramasamy and J. Lee, Carbon., 48 (2010) 3715.
[58]J. Zhang, X. Li, W. Guo, T. Hreid, J. Hou, H. Su and Z. Yuan, Electrochimica Acta., 56 (2011) 3147.
[59]C. T. Hsieh, B. H. Yang and J. Y. Lin, Carbon., 49 (2011) 3092.
[60]M. Y. Yen, M. C. Hsiao, S. H. Liao, P. I Liu, H. M. Tsai, C. C. M. Ma, N. W. Pu and M. D. Ger, Carbon, 49 (2011) 3597.
[61]K.C. Lin, T.H. Tsai and S.M. Chen, Biosensors and Bioelectronics., 26 (2010) 608.
[62]W. Hong, Y. Xu, G. Lu, C. Li and G. Shi, Electrochemistry Communications., 10 (2008) 1555.
[63]L. Wan, S. Wang, X. Wang, B. Dong, Z. Xu, X. Zhang, B. Yang, S. Peng, J. Wang and C. Xu, Solid State Sciences., 13 (2011) 468.
[64]G. Zhu, T. Xu, T. Lv, L. Pan, Q. Zhao and Z. Sun, Journal of Electroanalytical Chemistry., 650 (2011) 248.
[65]T.H. Tsai, S.C. Chiou and S.M. Chen, Int. J. Electrochem. Sci., 6 (2011) 3333.
[66]H. Paloniemi, M. Lukkarinen, T. Aaritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka and J. Lukkari, Langmuir, 22 (2006) 74.
[67]Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou and G. Wang, Chem. Phys. Lett., 299 (1999) 97.
[68]Z.F. Liu, Z.Y. Shen, T. Zhu, S.F. Hou, L.Z. Ying, Z.J. Shi and Z.N. Gu, Langmuir, 16 (2000) 3569.
[69]Y.C. Choi, Y.M. Shin, D.J. Bae, S.C. Lim, Y.H. Lee and B.S. Lee, Diam. Relat. Mater., 10 (2001) 1457.
[70]B. Wu, J. Zhang, Z. Wei, S.M. Cai and Z.F. Liu, J. Phys. Chem. B, 105 (2001) 5075.
[71]P. Santhosh, K.M. Manesh, A. Gopalan, K.P. Lee, Sensors and Actuators B, 125 (2007) 92.
[72]A. Riklin, E. Katz, I. Willner, A. Stocker, A.F. Buckmann, Nature 376 (1995) 672.
[73]B.Z. Chi, Q. Zeng, J.H. Jiang, G.L. Shen, R.Q. Yu, Sens. Actuators B 140 (2009) 591.
[74]H. Tang, F. Yan, Q. Tai, H.L.W. Chan, Biosens. Bioelectron. 25 (2010) 1646.
[75]J. Shi, H.Y. Zhang, A. Snyder, M.X. Wang, J. Xie, D.M. Porterfield, L.A. Stanciu, Biosens. Bioelectron. 38 (2012) 314.
[76]J. Shi, T.G. Cha, J.C. Claussen, A.R. Diggs, J.H. Choi, D.M. Porterfield, Analyst 136 (2011) 4916.
[77]M.D. Gouda, S.A. Singh, A.G.A. Rao, M.S. Thakur, N.G. Karanth, J. Biol. Chem. 278 (2003) 24324.
[78]Y. Liu, M.K. Wang, F. Zhao, Z. Xu, S.J. Dong, Biosens. Bioelectron. 21 (2005) 984.
[79]Z.J. Wang, X.Z. Zhou, J. Zhang, F. Boey, H. Zhang, J. Phys. Chem. C. 113 (2009) 14071.
[80]B. Singh, F. Laffir, T. McCormac, E. Dempsey, Sens. Actuators B 150 (2010) 80.
[81]J. Ryu, K. Kim, H.S. Kim, H.T. Hahn, D. Lashmore, Biosens. Bioelectron. 26 (2010) 602.
[82]L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, G. Zhao, Electrochem. Commun. 11 (2009) 812.
[83]X.L. Zhu, X. Gan, J. Wang, T. Chen, G.X. Li, J. Mol. Catal. A: Chem. 239 (2005) 201.
[84]B. Zheng, G. Liu, A. Yao, Y. Xiao, J. Du, Y. Guo, D. Xiao, Q. Hu, M.M.F. Choi, Sens. Actuators B 195 (2014) 431.
[85]B. Wu, Y. Kuang, X. Zhang, J. Chen, Nano Today 6 (2011) 75.
[86]J.C. Claussen, A. Kumar, D.B. Jaroch, M.H. Khawaja, A.B. Hibbard, D.M. Porter-field, T.S. Fisher, Adv. Funct. Mater. 22 (2012) 3399.
[87]K.C. Lin, T.H. Tsai, S.M. Chen, Biosens. Bioelectron. 26 (2010) 608.
[88]Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Electrochem. Commun. 9 (2007) 981.
[89]S. Park, T.D. Chung, H.C. Kim, Anal. Chem. 75 (2003) 3046.
[90]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electrochem. Commun. 6 (2004) 66.
[91]Q. Xu, Y. Zhao, J.Z. Xu, J.J. Zhu, Sens. Actuat. B 114 (2006) 379.
[92]J.H. Yuan, K. Wang, X.H. Xia, Adv. Funct. Mater. 15 (2005) 803.
[93]H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu, Anal. Chim. Acta 594 (2007) 175.
[94]B. Sljukic, C.E. Banks, A. Crossley, R.G. Compton, Electroanalysis, 19 (2007) 79.
[95]V. Rosca, M. Duca, M.T.D. Goot, M.T.M. Koper, Chem. Rev., 109 (2009) 2209.
[96]R. Yue, Q. Lu, Y. Zhou, Biosens. Bioelectron., 26 (2011) 4436.
[97]M. Bru, M.I. Burguete, F. Galindo, S.V. Luis, M.J. Marin, L. Vigara, Tetrahedron Lett., 47 (2006) 1787.
[98]P. Mikuska, Z. Vecera, Anal. Chem. Acta, 495 (2003) 225.
[99]X. Wang, E. Adams, A. Van Schepdael, Talanta, 97 (2012) 142.
[100]H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, J.
Chromatogr. A, 1216 (2009) 3163.
[101]Zhao Yilong, Zhao Dean, Li Daoliang, Int. J. Electrochem. Sci., 10 (2015)
1144.
[102]M. Zhang, F. Cheng, F. Gan, Int. J. Electrochem. Sci., 10 (2015) 5905.
[103]G. H. Lu, H. Jin, D. D. Song, Food Chem., 59 (1997) 583.
[104]A.S. Adekunle, B.B. Mamba, B.O. Agboola, K.I. Ozoemena, Int. J.
Electrochem. Sci., 6 (2011) 4388.
[105]P. Sanderson, J.M. Delgado-Saborit, R.M. Harrison, Atmos. Environ., 94
(2014) 353.
[106]G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa, P.V. Baptista, Sensors 12 (2012) 1657.
[107]H. You, S. Yang, B. Ding, H. Yang, Chem. Soc. Rev., 42 (2013) 2880.
[108]J.J. Gooding, Electrochim. Acta, 50 (2005) 3049.
[109]X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, Anal. Biochem., 369 (2007) 71.
[110]U. Yogeswaran, S. Thiagarajan, S.M. Chen, Anal. Biochem., 365 (2007)
122.
[111]S. Guo, S. Dong, E. Wang, J. Phys. Chem. C, 112 (2008) 2389.
[112]F. Xiao, Z. Mo, F. Zhao, B. Zeng, Electrochem. Commun., 10 (2008) 1740.
[113]X. Guo, D.J. Guo, X.P. Qiu, L.Q. Chen, W.T. Zhu, Electrochem. Commun.,
10 (2008) 1748.
[114]Z. Bai, C. Zhou, N. Gao, H. Pang, H. Ma, RSC Adv., 6 (2016) 937.
[115]C. Karuppiah, S. Palanisamy, S.M. Chen, S.K. Ramaraj, P. Periakaruppan,
Electrochim. Acta, 139 (2014) 157.
[116]A.J. Lin, Y. Wen, L.J. Zhang, B. Lu, Y. Li, Y.Z. Jiao, H.F. Yang,
Electrochim. Acta, 56 (2011) 1030.
[117]S. Palanisamy, B. Thirumalraj, S.M. Chen, J. Electroanal. Chem., 760
(2016) 97.
[118]L. Cui, J. Zhu, X. Meng, H. Yin, X. Pan, S. Ai, Sens. Actuators B, 161
(2012) 641.
[119]F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, C. Wang, Anal. Chim. Acta, 724
(2012) 40.
[120]S. Palanisamy, C. Karuppiah, S.M. Chen, P. Periakaruppan, J. Electroanal.
Chem., 727 (2014) 34.
[121]B. Sljukic, C.E. Banks, A. Crossley, R.G. Compton, Electroanalysis, 19
(2007) 79.

[122]V. Mani, A.P. Periasamy, S.M. Chen, Electrochem. Commun., 17 (2012)
75.
[123]L. Fu, S. Yu, L. Thompson, A. Yu, RSC Adv., 5 (2015) 40111.
[124]D. Zhang, Y. Fang, Z. Miao, M. Ma, X. Du, S. Takahashi, J. Anzai, Q.
Chen, Electrochim. Acta, 107 (2013) 656.
[125]D. Ye, L. Luo, Y. Ding, Q. Chen, X. Liu, Analyst, 136 (2011) 4563.
[126]W. Xue, L. Hui, W. Min, G.S. Li, Z. Yan, W.Q. Jiang, H.P. Gang, F.Y. Zhi,
Chin. J. Anal. Chem., 41 (2013) 1232.
[127]R.W. Murray, Ann. Rev. Mater. Sci., 14 (1984) 145.
[128]R.W. Murray, A.G. Ewing and R.A. Durst, Anal. Chem., 59 (1987) 379A.
[129]P. Shakkthivel and S.M. Chen, Biosens. Bioelectron., 22 (2007) 1680.
[130]S. Thiagarajan, T.H. Tsai and S.M. Chen, Biosens. Bioelectron., 24 (2009)
2712.
[131]G.F. Zuo, H.Q. Yuan, H.D. Yang, R.X. Zuo and X.Q. Lu, J. Mol. Catal. A:
Chem., 269 (2007) 46.
[132]K.M. Kadish, J.G. Shao, Z.P. Ou, L. Fremond, R.Q. Zhan, F. Burdet, J.M.
Barbe, C.P. Gros and R. Guilard, Inorg. Chem., 44 (2005) 6744.
[133]C.S. Martin, T.R.L. Dadamos and M.F.S. Teixeira, Sens. Actuators B:
Chem., 175 (2012) 111.
[134]T.H. Tsai, S.H. Wang and S.M. Chen, J. Electroanal. Chem., 659 (2011)
69.
[135]T.H. Tsai, S.H. Wang and S.M. Chen, Int. J. Electrochem. Sci., 6 (2011)
1655.
[136]C. Oudot, R. Gerard, P. Morin and I. Gningue, Limnol. Oceanogr., 33
(1988) 146.
[137]S.C. Pai, G.C. Gong and K.K. Liu, Mar. Chem., 41 (1993) 343.
[138]Y. Suzuki, H. Nishide and E. Tsuchida, Macromolecules, 33 (2000) 2530.
[139]A.K. McEvoy, C.M. McDonagh and B.D. MacCraith, Analyst, 121 (1996)
785.
[140]R.T. Bailey, F.R. Cruickshank, G. Deans, R.N. Gillanders and M.C.
Tedford, Anal. Chim. Acta, 487 (2003) 101.
[141]X.D. Shao, H.Y. Liu, X.F. Gao, W.Q. Chen and Z.H. Song, Chemical
Papers., 61 (2007) 353.
[142]W. Granéli and E. Granéli, Marine Biology, 108 (1991) 341.
[143]K.C. Gulla, M.D. Gouda, M.S. Thakur and N.G. Karanth, Biochim.
Biophys. Acta, 1597 (2002) 133.
[144]F.S. Damos, R.C.S. Luz, A.A. Tanaka and L.T. Kubota, Anal. Chim. Acta,
664 (2010) 144.
[145]R. Reinke and J. Simon, Aanl. Bioanal. Chem., 374 (2002) 1256.
[146]T.H. Tsai, S. Thiagarajan and S.M. Chen, Electroanalysis, 22 (2010) 680.
[147]M.S. Lin, H.J. Leu and C.H. Lai, Anal. Chim. Acta, 561 (2006) 164.
[148]Y.H. Lin, X.L. Cui and X.R. Ye, Electrochem. Commun., 7 (2005) 267.
[149]C.C. Yang, A. Senthil Kumar and J.M. Zen, Electroanalysis, 18 (2006) 64.
[150]H.F. Cui, J.S. Ye, W.D. Zhang, J. Wang and F.S. Sheu, J. Electroanal.
Chem., 577 (2005) 295.
[151]M.S. El-Deab, T. Sotomura and T. Ohsaka, Electrochim. Acta, 52 (2006)
1792.
[152]S. Guo, S. Dong and E. Wang, J. Phys. Chem. C., 112 (2008) 2389.
[153]J.S. Ye, Y. Wen, W.D. Zhang, H.F. Cui, L.M. Gan, G.Q. Xu and F.S. Sheu,
J. Electroanal. Chem., 562 (2004) 241.
[154]L. Mao, K. Arihara, T. Sotomura and T. Ohsaka, Electrochim. Acta, 49
(2004) 2515.
[155]F.P. Hu, X.G. Zhang, F. Xiao and J.L. Zhang, Carbon, 43 (2005) 2931.
[156]T.H. Tsai, S. Thiagarajan and S.M. Chen, J. Appl. Electrochem., 40 (2010)
493.
[157]T.H. Tsai, S. Thiagarajan and S.M. Chen, J. Appl. Electrochem., 40 (2010)
2071
[158]T.H. Tsai, K.C. Lin and S.M. Chen, Int. J. Electrochem. Sci., 6 (2011) 2672.
[159]O. Tripachev, V. Bogdanovskaya, M. Tarasevich and V. Andoralov, J.
Electroanal. Chem., 683 (2012) 21.
[160]M.I. Awad and T. Ohsaka, J. Power Sources., 226 (2013) 306.
[161]K.C. Lin, T.H. Tsai and S.M. Chen, Biosens. Bioelectron., 26 (2010) 608.
[162]C.Y. Yang, S.M. Chen, T.H. Tsai and B. Unnikrishnan, Int. J. Electrochem.
Sci., 7 (2012) 12796.
[163]S. Thiagarajan, T.H. Tsai and S.M. Chen, Biosens. Bioelectron., 24 (2009)
2712.
[164]Z. Yaping, Z. Aibo, C. Qinghua, Z. Jiaoxia and N. Rongchang, Mater. Sci.
Eng. A., 435 (2006) 145.
[165]R.W. Murray, in Electroanalytical Chemistry, Marcel Dekker, New York
(1984) Vol. 13 (Ed: A. J. Bard), pp. 191-386.
[166]T.H. Tsai, T.W. Chen and S.M. Chen, Electroanalysis, 22 (2010) 1655.
[167]Y. Liu, T. Han, C. Chen, N. Bao, C.M. Yu and H.Y. Gu, Electrochim. Acta,
56 (2011) 3238.
[168]L. Wu, X. Zhang and H. Ju, Biosens. Bioelectron., 23 (2007) 479.
[169]C.S. Martin, T.R.L. Dadamos and M.F.S. Teixeira, Sens. Actuators B:
Chem., 175 (2012) 111.
[170]L.S.S. Santos, R. Landers and Y. Gushikem, Talanta, 85 (2011) 1213.
[171]R. de C.S. Luz, F.S. Damos, A.A. Tanaka and L.T. Kubota, Sens. Actuators
B: Chem., 114 (2006) 1019.
[172]M.S. Lin, H.J. Leu and C.H. Lai, Anal. Chim. Acta, 561 (2006) 164.
[173]E.S. Ribeiro, S.L.P. Dias, Y. Gushikem and L.T. Kubota, Electrochim.
Acta, 49 (2004) 829.
[174]H. Zhang, X. Wang, R. Jia, J. Hou, W. Guo, Int. J. Electrochem. Sci., 8
(2013) 1262.
[175]J. Ma, X. Wang, X. Jiao, Int. J. Electrochem. Sci., 7 (2012) 1556.
[176]I. Kruusenberg, L. Matisen and K. Tammeveski, Int. J. Electrochem. Sci., 8
(2013) 1057.
[177]A. Ezeta-Mejía, J.M. Mora-Hernández, J.M. Hallen-López and E.M.
Arce-Estrada, Int. J. Electrochem. Sci., 8 (2013) 2044.
[178]K. Rabaey, W. Verstraete, Trends in Biotechnology. 23 (2005) 291.
[179]R.A. Bullen, T.C. Arnot, J.B. Lakeman, F.C. Walsh, Biosensors &
Bioelectronics. 21 (2006) 2015.
[180]F. Davis, S.P.J Higson, Biosensors & Bioelectronics. 22 (2007) 1224.
[181]B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia,
P. Aelterman, W. Verstraete, K. Rabaey, Environmental Science &
Technology. 40 (2006) 5181.
[182]S.C. Barton, J. Gallaway, P. Atanassov, Chem. Rev. 104 (2004) 4867.
[183]A. Ramanavicius, A. Kausaite, A. Ramanaviciene, Biosensors &
Bioelectronics. 20 (2005) 1962.
[184]A. Heller, Acc. Chem. Res. 23 (1990) 128.
[185]G.T.R. Palmore, H.H. Kim, J. Electroanal. Chem. 464 (1999) 110.
[186]I. Willner, Y.M. Yan, B. Willner, R. Tel-Vered, Fuel Cells. 9 (2009) 7.
[187]M.J. Cooney, V. Svoboda, C. Lau, G. Martin, S.D. Minteer, Energy Environ
Sci. 1 (2008) 320.
[188]E. Nazaruk, K. Sadowska, J.F. Biernat, J. Rogalski, G. Ginalska, R.
Bilewicz, Anal. Bioanalytical Chem. 398 (2010) 1651.
[189]A.P. Periasamy, Y.J. Chang, S.M. Chen, S.M., Bioelectrochemistry. 80
(2011) 114.
[190]A. Zebda, C. Gondran, P. Cinquin, S. Cosnier, Sens. Actuators B. 173
(2012) 760.
[191]U. Salaj-Kosla, S. Pöller, Y. Beyl, M.D. Scanlon, S. Beloshapkin, S.Shleev,
W. Schuhmann, E. Magner, Electrochem. Commu. 16 (2012) 92.
[192]X. Wang, M. Falk, R. Ortiz, H. Matsumura, J. Bobacka, R. Ludwig, M.
Bergelin, L. Gorton, S. Shleev, Biosensors & Bioelectronics. 31 (2012) 219.
[193]P.C. Nien, J.Y. Wang, P.Y. Chen, L.C. Chen, K.C. Ho, Bioresour. Technol.
101 (2010) 5480.
[194]Y. Lin, X. Cui, X. Ye, Electrochem. Commu. 7 (2005) 267.
[195]C.C. Yang, A.S. Kumar, J.M. Zen, Electroanalysis. 18 (2006) 64.
[196]H.F. Cui, J.S. Ye, W.D. Zhang, J. Wang, F.S. Sheu, J. Electroanal. Chem.
577 (2005) 295.
[197]M.S. El-Deab, T. Sotomura, T. Ohsaka, Electrochim. Acta. 52 (2006) 1792.
[198]J.S. Ye, Y. Wen, W.D. Zhang, H.F. Cui, L.M. Gan, G.Q. Xu, F.S. Sheu, J.
Electroanal. Chem. 562 (2004) 241.
[199]T.H. Tsai, S. Thiagarajan, S,M. Chen, Electroanalysis. 22 (2010) 680.
[200]T.H. Tsai, S.H. Wang, S.M. Chen, J. Electroanal. Chem. 659 (2011) 69.
[201] C.Y. Yang, S.M. Chen, T.H. Tsai, B. Unnikrishnan, Int. J. Electrochem.
Sci. 7 (2012) 12796.
[202]C. Qiu, X. Wang, X. Liu, S. Hou, H. Ma, Electrochim. Acta. 67 (2012) 140.
[203]H. Zhanga, Z. Meng, Q. Wang, J. Zheng, Sens. Actuators B. 158 (2011) 23.
[204]S. Liu, H. Ju, Biosensors & Bioelectronics. 19 (2003) 177.
[205]B.Y.Wu, S.H. Hou, F. Yin, Z.X. Zhao, Y.Y. Wang, X.S. Wang, Q. Chen,
Biosensors & Bioelectronics. 22 (2007) 2854.
[206]Y.L. Yao, K.K. Shiu, Electroanalysis. 20 (2008) 1542.
[207]S. Zhang, N. Wang, Y. Niu, C. Sun, Sens. Actuators B. 109 (2005) 367.
[208]P. Li, J. Wu, J. Lin, M. Huang, Y. Huang, Q. Li, Solar Energy, 83 (2009)
845.
[209]T.H. Tsai, S.C. Chiou and S.M. Chen, Int. J. Electrochem. Sci., 6 (2011)
3938.
[210]C.H. Yoon, R. Vittal, J. Lee, W.S. Chae and K.J. Kim, Electrochim. Acta,
53 (2008)2890.
[211]T.N. Murakami and M. Grätzel, Inorganica Chim. Acta, 361 (2008) 572.
[212]Z. Lv, D. Xie, X. Yue, C. Feng, C. Wei, J. Power Sources 210 (2012) 26.
[213]W. Sugimoto, T. Saida, Y. Takasu, Electrochem. Commun. 8 (2006) 411.
[214]M. Peckerar, Z. Dilli, M. Dornajafi, N. Goldsman, Y. Ngu, R.B. Proctor,
B.J. Krupsaw, D.A. Lowy, Energy Environ. Sci. 4 (2011) 1807.
[215]T. Kuwahara, H. Ohta, M. Kondo and M. Shimomura, Bioelectrochemistry,
74 (2008) 66.
[216]J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Ha, J. Power Sources, 181
(2008) 172.
[217]T.H. Tsai, S.C. Chiou and S.M. Chen, Int. J. Electrochem. Sci., 6 (2011)
3333.
[218]J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Langmuir 15
(1999)780.
[219]T.H. Tsai, T.W. Chen, S.M. Chen and K.C. Lin,Int. J. Electrochem. Sci., 6
(2011) 2058.
[220]T.W. Chen, T.H. Tsai, S.M. Chen and K.C. Lin, Int. J. Electrochem. Sci., 6
(2011) 2043.
[221]T.H. Tsai, Y.C. Huang, S.M. Chen, Int. J. Electrochem. Sci., 6 (2011) 3238.
[222]T.H. Tsai, T.W. Chen, S.M. Chen, Int. J. Electrochem. Sci., 6 (2011) 4628.
[223]T.H. Tsai, Y.C. Huang, S.M. Chen, M.A. Ali, F.M.A. Alhemaid, Int. J.
Electrochem. Sci., 6 (2011) 6456.
[224]T.H. Tsai, T.W. Chen, S.M. Chen, R. Sarawathi, Russ. J. Electrochem., 48
(2012) 291.
[225]C.H. Yoon, R. Vittal, J. Lee, W.S. Chae and K.J. Kim, Electrochim. Acta,
53 (2008)2890.
[226]T.N. Murakami and M. Grätzel, InorganicaChim. Acta, 361 (2008) 572.
[227]K.M. Kost, D.E. Bartak, B. Kazee, T. Kuwana,Anal. Chem., 60 (1988)
2379.
[228]A.Kitani, T. Akashi, K. Sugimoto, S. Ito, Synth. Met., 121 (2001) 1301.
[229]W.H. Kao and T. Kuwana, J. Am. Chem. Soc., 106 (1984) 473.
[230]F. Ficicioglu and F. Kadirgan, J. Electroanal. Chem., 430 (1997) 179.
[231]A.Drelinkiewicz, M. Hasik and M. Kloc, Catal. Letters, 64 (2000) 41.
[232]E.T. Kang, Y.P. Ting, K.G. Neoh and K.L. Tan, Synth. Met., 69 (1995) 477.
[233]G. Inzelt, M. Pineri, J.W. Schultze and M.A. Vorotyntsev, Electrochim.
Acta,45 (2000) 2403.
[234]V.S. Vasantha, S. M. Chen, Electrochim. Acta, 51 (2005) 347.
[235]V.S. Vasantha, S. M. Chen, J. Electroanal. Chem., 592 (2006) 77.
[236]J. Haglund, F. Fernandez-Guillermet, G. Grimvall, M. Korling, Phys. Rev.
B, 48 (1993) 11685.
[237]C. Arbizzani, M. Biso, E. Manferrari, M. Mastragostino, J. Power Sources,
178 (2008) 584.
[238]A.I. Popov, D.H. Geske, J. Am. Chem. Soc., 80 (1958) 1340.
[239]J. Zhang, T. Hreid, X. Li, W. Guo, L. Wang, X. Shi, H. Su, Z. Yuan,
Electrochimica Acta, 55 (2010) 3664.
[240]S.P. Somani, P.R. Somani, A. Sato, M. Umeno, Diamond & Related
Materials, 18 (2009) 497.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top