[1] V. H. Sangeetha, H. Deka, T. O. Varghese, and S. K. Nayak, "State of the art and future prospectives of poly(lactic acid) based blends and composites," Polymer Composites, 2016.
[2] 毛慶豐, "環境友善的材料─生質高分子," 科學發展月刊, 2013.[3] 楊斌, PLA聚乳酸環保塑膠. 台北市: 五南圖書出版股份有限公司, 2010.
[4] E. T. H. Vink, K. R. Rábago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production," Polymer Degradation and Stability, vol. 80, pp. 403-419, 2003.
[5] 吳震裕 and 陳新岳, "黏土與高分子奈米複合材料之發展與應用," 化工會刊, 2012.[6] J. Jiang, Y. B. Chen, and Q. W. Y. Liu, "Intergrowth charring for flame- retardant glass fabric-reinforced epoxy resin composites," J Mater Chem A, vol. 3, pp. 4284–4290, 2015.
[7] X. Bao and X. F. Cai, "Synergistic effect of methyl phenyl silicone resin and DOPO on the flame retardancy of epoxy resins," J Therm Anal Calorim, vol. 118, pp. 369-375, 2014.
[8] Q. Liu, X. Bao, and S. Q. Deng, "The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer," J Therm Anal Calorim, vol. 118, pp. 247-254, 2014.
[9] S. Ahmada, A. P. Gupta, E. Sharmin, M. Alam, and S. K. Pandey, "Synthesis, characterization and development of high performance siloxane-modified epoxy paints," Prog Org Coat, vol. 4, pp. 248–255, 2005.
[10] C. S. Wu, Y. L. Liu, and Y. S. Chu, "Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents," Polym., vol. 43, pp. 4277–4284, 2002.
[11] L. Zhang, Y. Wang, and X. Cai, "Effect of a novel polysiloxane-containing nitrogen on the thermal stability and flame retardancy of epoxy resins," Journal of Thermal Analysis and Calorimetry, pp. 1-8, 2016.
[12] R. Auras, B. Harte, and S. Selke, "An Overview of Polylactides as Packaging Materials," Macromolecular Bioscience, vol. 4, pp. 835-864, 2004.
[13] P. Gruber, M. O’Brien, Y. Doi, and A. Steinbüchel, "Polyesters III: applications and commercial products," Biopolymer, vol. 4, pp. 235-249, 2002.
[14] B. Gupta, N. Revagade, and J. Hilborn, "Poly(lactic acid) fiber: An overview," Progress in Polymer Science, vol. 32, pp. 455-482, 2007.
[15] 賴易聖, "利用聚胺酯增韌聚乳酸之研究," 高分子科學與工程學研究所, 臺灣大學, 2008.
[16] 張豐志、李柱雄, "應用高分子手冊," 五南圖書出版股份有限公司, 2003.
[17] S. J. Clarson and J. A. Semlyen, "Siloxane Polymers," PRT Prentice Hall, New Jersey, pp. 1-40, 1993.
[18] 王英傑 and 黃素珍, "矽化合物專題調查報告," 工研院化工所, 1994.
[19] Yevgeny Berdichevsky, Julia Khandurina, András Guttman, and Y.-H. Lo, "Sensors and Actuators B," vol. 97, pp. 402-408, 2004.
[20] 吳至德, "尼龍表面親疏水性之研究," 化學工程與材料研究所, 國立中央大學, 2005.
[21] C. Gao and D. Yan, "Hyperbranched polymers: from synthesis to applications," Progress in Polymer Science, vol. 29, pp. 183-275, 2004.
[22] B. Voit, "New Developments in Hyperbranched Polymers," Journal of Polymer, vol. 38, pp. 2505-2525, 2000.
[23] Y. H. Kim, "Hyperbranched polymers 10 years after," Journal of Polymer Science Part A Polymer Chemistry, vol. 36, pp. 1685-1698, 1998.
[24] K.Uhrich, "Hyperbranched polymers for drug delivery," Cambridge, ROYAUME-UNI: Elsevier, vol. 5, 1997.
[25] H. Liu, J. H. Näsman, and M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, pp. 3074-3085, 2000.
[26] C. Nguyen, C. J. Hawker, R. D. Miller, E. Huang, J. L. Hedrick, R. Gauderon, et al., "Hyperbranched polyesters as nanoporosity templating agents for organosilicates," Macromolecules, vol. 33, pp. 4281-4284, 2000.
[27] E. Kramer, "Microscopic and molecular fundamentals of crazing," in Crazing in Polymers. vol. 52-53, H. H. Kausch, Ed., ed: Springer Berlin Heidelberg, 1983, pp. 1-56.
[28] E. H. Merz, G. C. Claver, and M. Baer, "Studies on heterogeneous polymeric systems," Journal of Polymer Science, vol. 22, pp. 325-341, 1956.
[29] S. Newman and S. Strella, "Stress—strain behavior of rubber-reinforced glassy polymers," Journal of Applied Polymer Science, vol. 9, pp. 2297-2310, 1965.
[30] 林晏輝, "聚乳酸材料之阻燃及增韌: I.聚乳酸/碳纖維/氫氧化鋁/奈米黏土複合材料之阻燃性質 II.利用分枝狀高分子增韌聚乳酸材料," 化學工程研究所, 台北科技大學, 2012.
[31] 胡德, 高分子物理與機械性質(下). 臺北市: 渤海堂文化事業有限公司, 1940.
[32] A. Peterlin, "Molecular model of drawing polyethylene and polypropylene," Journal of Materials Science, vol. 6, pp. 490-508, 1971/06/01 1971.
[33] William D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction: Wily, 2014.
[34] Y. Zhao, X. Lang, H. Pan, Y. Wang, H. Yang, H. Zhang, et al., "Effect of mixing poly(lactic acid) with glycidyl methacrylate grafted poly(ethylene octene) on optical and mechanical properties of the blown films," Polymer Engineering and Science, vol. 55, pp. 2801-2813, 2015.
[35] M. L. Di Lorenzo, R. Ovyn, M. Malinconico, P. Rubino, and Y. Grohens, "Peculiar crystallization kinetics of biodegradable poly(lactic acid)/poly(propylene carbonate) blends," Polymer Engineering and Science, vol. 55, pp. 2698-2705, 2015.
[36] F. Qi, M. Tang, X. Chen, M. Chen, G. Guo, and Z. Zhang, "Morphological structure, thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes," European Polymer Journal, vol. 71, pp. 314-324, 2015.
[37] S. Wongsampanwech and P. Potiyaraj, "Toughening of poly(lactic acid) by blending with poly (ethylene-co-octene)," in Advanced Materials Research vol. 1025-1026, ed, 2014, pp. 461-465.
[38] D. Notta-Cuvier, J. Odent, R. Delille, M. Murariu, F. Lauro, J. M. Raquez, et al., "Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties," Polymer Testing, vol. 36, pp. 1-9, 2014.
[39] W. L. Tham, Z. A. Mohd Ishak, and W. S. Chow, "Mechanical and thermal properties enhancement of poly(lactic acid)/halloysite nanocomposites by maleic-anhydride functionalized Rubber," Journal of Macromolecular Science, Part B: Physics, vol. 53, pp. 371-382, 2014.
[40] L. Feng, X. Bian, Z. Chen, G. Li, and X. Chen, "Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly(ethylene glycol) based copolymers," Polymer Degradation and Stability, vol. 98, pp. 1591-1600, 2013.
[41] H. Kang, B. Qiao, R. Wang, Z. Wang, L. Zhang, J. Ma, et al., "Employing a novel bioelastomer to toughen polylactide," Polymer, vol. 54, pp. 2450-2458, 2013.
[42] A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, "High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties," Polymer, vol. 37, pp. 5849-5857, 1996.
[43] I. Pillin, N. Montrelay, and Y. Grohens, "Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?," Polymer, vol. 47, pp. 4676-4682, 2006.
[44] M. Lewin, S. M. Atlas, and E. M. Pearce, "Flame-retardant polymeric materials," ISRAEL FIBRE INST, vol. 2, 1978.
[45] S.-Y. Lu and I. Hamerton, "Recent developments in the chemistry of halogen-free flame retardant polymers," Progress in Polymer Science, vol. 27, pp. 1661-1712, 2002.
[46] 沈永清、張信貞、莊學平、張榮樹, "高分子難燃機構及原理," 化工資訊, vol. 9, pp. 15-31, 1995.
[47] 陳光榮、黃素珍, "難燃劑國內市場現況及走向," 化工資訊, vol. 7, pp. 24-37, 1993.
[48] Richard G. Jones, Wataru Ando, and J. Chojnowski, "Thermal stability of polydimethylsiloxanes: silicone-containing polymers," polymers,Dordrecht the Netherlands :Kluwer Acedemic Publisher, pp. 185-212, 2000.
[49] T.H.Thomas and T.C.kendrick, "thermal analysis of polydimethylsiloxanes.I. thermal degradation in controlled atmospheres," Journal of Polymer Science Part A-2;Polymer Physics, vol. 7,no3, pp. 537-549, 1969.
[50] C. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation part 1. Kinetic aspects," Polymer, vol. 42, pp. 2395-2402, 2001.
[51] T. S. Radhakrishnan, "New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: Thermal degradation of polydimethylsiloxanes," Journal of Applied Polymer Science, vol. 73, pp. 441-450, 1999.
[52] Grassie N and M. I.G., "The thermal degradation of polysiloxane-I poly(dimethylsiloxane)," European Polymer Journal, vol. 14, pp. 875–884, 1978.
[53] K. C. Cheng, Y. H. Lin, W. Guo, T. H. Chuang, S. C. Chang, S. F. Wang, et al., "Flammability and tensile properties of polylactide nanocomposites with short carbon fibers," Journal of Materials Science, vol. 50, pp. 1605-1612, 2015.
[54] X. Zhou, J. Li, and Y. Wu, "Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide," Polymers for Advanced Technologies, vol. 26, pp. 255-265, 2015.
[55] P. Jiang, X. Gu, S. Zhang, S. Wu, Q. Zhao, and Z. Hu, "Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant," Industrial and Engineering Chemistry Research, vol. 54, pp. 2974-2982, 2015.
[56] M. A. Ortenzi, L. Basilissi, H. Farina, G. Di Silvestro, L. Piergiovanni, and E. Mascheroni, "Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via "in situ" polymerization of L-lactide with silane-modified nanosilica and montmorillonite," European Polymer Journal, vol. 66, pp. 478-491, 2015.
[57] J. Zhang, E. Fleury, Y. Chen, and M. A. Brook, "Flame retardant lignin-based silicone composites," RSC Advances, vol. 5, pp. 103907-103914, 2015.
[58] L. Costes, F. Laoutid, L. Dumazert, J. M. Lopez-Cuesta, S. Brohez, C. Delvosalle, et al., "Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid)," Polymer Degradation and Stability, vol. 119, pp. 217-227, 2015.
[59] Q. Tang, R. Yang, and J. He, "Investigations of thermoplastic poly(imide-urethanes) flame-retarded by hydroxyl-terminated poly(dimethylsiloxane)," Industrial and Engineering Chemistry Research, vol. 53, pp. 9714-9720, 2014.
[60] Y. Ju, F. Liao, X. Dai, Y. Cao, J. Li, and X. Wang, "Flame-retarded biocomposites of poly(lactic acid), distillers dried grains with solubles and resorcinol di(phenyl phosphate)," Composites Part A: Applied Science and Manufacturing, vol. 81, pp. 52-60, 2016.
[61] M. Murariu, L. Bonnaud, P. Yoann, G. Fontaine, S. Bourbigot, and P. Dubois, "New trends in polylactide (PLA)-based materials: “Green” PLA–Calcium sulfate (nano)composites tailored with flame retardant properties," Polymer Degradation and Stability, vol. 95, pp. 374-381, 2010.
[62] J. Zhan, L. Song, S. Nie, and Y. Hu, "Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant," Polymer Degradation and Stability, vol. 94, pp. 291-296, 2009.
[63] C. Réti, M. Casetta, S. Duquesne, S. Bourbigot, and R. Delobel, "Flammability properties of intumescent PLA including starch and lignin," Polymers for Advanced Technologies, vol. 19, pp. 628-635, 2008.
[64] J. T. Yeh, H. M. Yang, and S. S. Huang, "Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene," Polymer Degradation and Stability, vol. 50, pp. 229-234, 1995.
[65] C. M. Jiao and X. L. Chen, "Flame retardant synergism of hydroxy silicone oil and AI(OH)3 in EVA composites," Polymer - Plastics Technology and Engineering, vol. 48, pp. 665-670, 2009.
[66] C. Jiao and X. Chen, "Synergistic flame retardant effect of lanthanum oxide in ethylene-vinyl acetate/aluminium hydroxide composites," Iranian Polymer Journal (English Edition), vol. 18, pp. 723-730, 2009.
[67] K. Maruvada, C. Cojocariu, and N. Rosenquist, "Flame retardancy of polycarbonate-PDMS copolymer compositions," in Annual Technical Conference - ANTEC, Conference Proceedings, 2009, pp. 982-988.
[68] X. Wen, Y. Lin, C. Han, L. Han, Y. Li, and L. Dong, "Dramatic Improvements in Mechanical Properties of Poly( L -lactide)/Silica Nanocomposites by Addition of Hyperbranched Poly(ester amide)," Macromolecular Materials and Engineering, vol. 295, pp. 415-419, 2010.
[69] C.-H. Ke, J. Li, K.-Y. Fang, Q.-L. Zhu, J. Zhu, Q. Yan, et al., "Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide," Polymer Degradation and Stability, vol. 95, pp. 763-770, 2010.
[70] J. F. Z. Kembłowski, Applied Fluid Rheology, 1991.
[71] Z. Kemblowski, Applied Fluid Rheology Springer, 1991.
[72] C. D. Han, Multiphase Flow in Polymer Processing, 1981.
[73] 吳其曄、巫靜安, 高分子材料流變學.
[74] M. T. Ghannam, S. W. Hasan, B. Abu-Jdayil, and N. Esmail, "Rheological properties of heavy & light crude oil mixtures for improving flowability," Journal of Petroleum Science and Engineering, vol. 81, pp. 122-128, 2012.
[75] ANSI/UL94-2010, "Standard ofr Tests for Flammability of Plastic Materials for Parts in Devices and Appliance," ed: American National Standards Institute, 2010.
[76] ASTM3801, "Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position," ed. Annual Book of ASTM Standards, 2010.
[77] 梁仁耀, "DGEBA型環氧樹脂與4,4-亞甲基雙苯胺合成超分枝高分子," 化學工程研究所, 台北科技大學, 2009.
[78] ASTMD2863, "Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)," ed. Annual Book of ASTM Standards, 2012.
[79] ASTMD638, "Standard Test Method for Tensile Properties of Plastics," ed. Annual Book of ASTM Standards, 2010.
[80] J. S. Nakka, K. M. B. Jansen, and L. J. Ernst, "Tailoring the viscoelasticity of epoxy thermosets," Journal of Applied Polymer Science, vol. 128, pp. 3794-3806, 2013.
[81] B. Alonso, D. Massiot, M. Valentini, T. Kidchob, and P. Innocenzi, "Design of hybrid organic-inorganic materials through their structure control: The case of epoxy bearing alkoxides," Journal of Non-Crystalline Solids, vol. 354, pp. 1615-1626, 2008.
[82] M. Pramanik, S. K. Mendon, and J. W. Rawlins, "Disecondary amine synthesis and its reaction kinetics with epoxy prepolymers," Journal of Applied Polymer Science, vol. 126, pp. 1929-1940, 2012.
[83] F. Laupretre, "Applications of high-resolution solid-state carbon-13 NMR to polymers," Progress in Polymer Science, vol. 15, pp. 425-474, 1990.
[84] J. Wang, M. K. Cheung, and Y. Mi, "Miscibility and morphology in crystalline/amorphous blends of poly (caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR," Polymer, vol. 43, pp. 1357-1364, 2002.
[85] T. M. Lee, C. C. M. Ma, C. W. Hsu, and H. L. Wu, "Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes," Polymer, vol. 46, pp. 8286-8296, 2005.
[86] M. Garrido, M. S. Larrechi, and F. X. Rius, "Near infrared spectroscopy and multivariate curve resolution-alternating least squares incorporating 13C-NMR information for monitoring epoxy resins reactions," Journal of Chemometrics, vol. 21, pp. 263-269, 2007.
[87] J. Liu, T. Xu, M. Gong, F. Yu, and Y. Fu, "Fundamental studies of novel inorganic-organic charged zwitterionic hybrids. 4. New hybrid zwitterionic membranes prepared from polyethylene glycol (PEG) and silane coupling agent," Journal of Membrane Science, vol. 283, pp. 190-200, 2006.
[88] Y. Ngono-Ravache, M. F. Foray, and M. Bardet, "High resolution solid-state 13C-NMR study of as-cured and irradiated epoxy resins," Polymers for Advanced Technologies, vol. 12, pp. 515-523, 2001.
[89] M. F. Grenier-Loustalot and P. Grenier, "Application of high resolution solid cp mas NMR to the study of organic matrixes of composite materials. Aromatic O-epoxy amine systems," European Polymer Journal, vol. 22, pp. 457-470, 1986.
[90] 李文瑜, "分枝狀聚氧化乙烯高分子鋰電解質之結晶動力學," 化學工程研究所, 台北科技大學, 2011.
[91] C. H. Tsao and P. L. Kuo, "Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery," Journal of Membrane Science, vol. 489, pp. 36-42, 2015.
[92] L. Hu, Z. Yang, L. Cui, Y. Li, H. H. Ngo, Y. Wang, et al., "Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue," Chemical Engineering Journal, vol. 287, pp. 545-556, 2016.
[93] J. Zhang, S. Hu, G. Zhan, X. Tang, and Y. Yu, "Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin," Progress in Organic Coatings, vol. 76, pp. 1683-1690, 2013.
[94] 周寧琳, 有機矽聚合物導論, 2000.
[95] H. Zhao-Rang, L. Feng-Qi, Y. Bai, C. Li-Li, and T. Xin-Yi, "Study on laminar viscosity and zero shear viscosity of latex systems," Journal of Colloid and Interface Science, vol. 251, pp. 447-451, 2002.
[96] H. Y. Tan, W. K. Loke, and N. T. Nguyen, "A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps," Sensors and Actuators, B: Chemical, vol. 151, pp. 133-139, 2010.
[97] S. Kasapis, "The use of Arrhenius and WLF kinetics to rationalise the rubber-to-glass transition in high sugar/κ-carrageenan systems," Food Hydrocolloids, vol. 15, pp. 239-245, 2001.
[98] I. B. Pehlivan, R. Marsal, G. A. Niklasson, C. G. Granqvist, and P. Georén, "PEI-LiTFSI electrolytes for electrochromic devices: Characterization by differential scanning calorimetry and viscosity measurements," Solar Energy Materials and Solar Cells, vol. 94, pp. 2399-2404, 2010.
[99] P. J. Carreau, Rheological equations from molecular network theories, 1972.
[100] H. q. Yan, H. q. Wang, and J. Cheng, "Interpenetrating polymer networks from the novel bismaleimide and cyanate containing naphthalene: Cure and thermal characteristics," European Polymer Journal, vol. 45, pp. 2383-2390, 2009.
[101] M. L. Williams, R. F. Landel, and J. D. Ferry, "The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids," Journal of the American Chemical Society, vol. 77, pp. 3701-3707, 1955.
[102] C. Liu, J. Wang, and J. He, "Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE," Polymer, vol. 43, pp. 3811-3818, 2002.
[103] C. R. López-Barrón and C. W. MacOsko, "Rheological and morphological study of cocontinuous polymer blends during coarsening," Journal of Rheology, vol. 56, pp. 1315-1334, 2012.
[104] C. Pandis, S. Trujillo, J. Matos, S. Madeira, J. Rõdenas-Rochina, S. Kripotou, et al., "Porous polylactic acid-silica hybrids: Preparation, characterization, and study of mesenchymal stem cell osteogenic differentiation," Macromolecular Bioscience, vol. 15, pp. 262-274, 2015.
[105] Yee Bond Tee, Rosnita A. Talib, Khalina Abdan, Nyuk Ling Chin, Roseliza Kadir Basha, and K. F. M. Yunos, "Thermally Grafting Aminosilane onto Kenaf-Derived Cellulose and Its Influence on the Thermal Properties of Poly(Lactic Acid) Composites," BioResources, vol. 8, 2013.
[106] 薛霈枎, "彈性體增韌回收聚碳酸酯改質研究," 有機高分子研究所, 台北科技大學, 2013.
[107] B. John, K. T. Varughese, Z. Oommen, and S. Thomas, "Melt rheology of HDPE/EVA blends: The effects of blend ratio, compatibilization, and dynamic vulcanization," Polymer Engineering & Science, vol. 50, pp. 665-676, 2010.
[108] S. Lin, S. Sun, Y. He, X. Wang, and D. Wu, "Effects of phosphate and polysiloxane on flame retardancy and impact toughening behavior of poly(2,6-dimethyl-1,4-phenylene oxide)," Polymer Engineering & Science, vol. 52, pp. 927-936, 2012.
[109] Z. Jia, J. Tan, C. Han, Y. Yang, and L. Dong, "Poly(ethylene glycol-co-propylene glycol) as a macromolecular plasticizing agent for polylactide: Thermomechanical properties and aging," Journal of Applied Polymer Science, vol. 114, pp. 1105-1117, 2009.
[110] K. Zhang, X. Ran, X. Wang, C. Han, L. Han, X. Wen, et al., "Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide)," Polymer Engineering & Science, vol. 51, pp. 2370-2380, 2011.
[111] Z. Gui, Y. Xu, S. Cheng, Y. Gao, and C. Lu, "Preparation and characterization of polylactide/poly(polyethylene glycol-co-citric acid) blends," Polymer Bulletin, vol. 70, pp. 325-342, 2013/01/01 2013.
[112] 張舜智, "含分枝狀高分子聚乳酸複合材料阻燃及增韌性質," 化學工程研究所, 台北科技大學, 2014.
[113] 王雋傑, "含矽氧烷分枝狀高分子聚乳酸複合材料之阻燃與機械性質," 化學工程與生物科技系化學工程研究所, 台北科技大學, 2015.
[114] C. Nyambo, M. Misra, and A. Mohanty, "Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene," Journal of Materials Science, vol. 47, pp. 5158-5168, 2012/07/01 2012.
[115] P. Ma, A. B. Spoelstra, P. Schmit, and P. J. Lemstra, "Toughening of poly (lactic acid) by poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content," European Polymer Journal, vol. 49, pp. 1523-1531, 2013.
[116] K. A. Afrifah and L. M. Matuana, "Impact Modification of Polylactide with a Biodegradable Ethylene/Acrylate Copolymer," Macromolecular Materials and Engineering, vol. 295, pp. 802-811, 2010.
[117] S. S. Miji and Y.Kiuchi, "Electronic Compounds and Technology Conference," p. 245, 1999.
[118] 劉秉塵, "聚乳酸/聚對苯二甲酸丙二酯掺合體之結晶動力學及形態學與相容性之研究," 有機高分子研究所, 台北科技大學, 2008.
[119] 李孟良, "生物可分解性聚合物摻和系統之結晶行為研究," 有機高分子研究所, 台北科技大學, 2005.
[120] S. Wong, R. A. Shanks, and A. Hodzic, "Mechanical Behavior and Fracture Toughness of Poly(L-lactic acid)-Natural Fiber Composites Modified with Hyperbranched Polymers," Macromolecular Materials and Engineering, vol. 289, pp. 447-456, 2004.
[121] 杜逸虹, 聚合體學. 臺北市: 三民書局股份有限公司, 2010.
[122] Y. Lin, K.-Y. Zhang, Z.-M. Dong, L.-S. Dong, and Y.-S. Li, "Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide)," Macromolecules, vol. 40, pp. 6257-6267, 2007/08/01 2007.
[123] C. Courgneau, S. Domenek, A. Guinault, L. Avérous, and V. Ducruet, "Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid)," Journal of Polymers and the Environment, vol. 19, pp. 362-371, 2011/06/01 2011.
[124] O. Martin and L. Avérous, "Poly(lactic acid): plasticization and properties of biodegradable multiphase systems," Polymer, vol. 42, pp. 6209-6219, 2001.
[125] M. L. Di Lorenzo, "Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid)," Journal of Applied Polymer Science, vol. 100, pp. 3145-3151, 2006.
[126] H. Ardhyananta, M. H. Wahid, M. Sasaki, T. Agag, T. Kawauchi, H. Ismail, et al., "Performance enhancement of polybenzoxazine by hybridization with polysiloxane," Polymer, vol. 49, pp. 4585-4591, 2008.
[127] K.-C. Cheng, C.-B. Yu, W. Guo, S.-F. Wang, T.-H. Chuang, and Y.-H. Lin, "Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay," Carbohydrate Polymers, vol. 87, pp. 1119-1123, 2012.