(3.236.222.124) 您好!臺灣時間:2021/05/19 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡岳宇
研究生(外文):Yueh-Yu Tsai
論文名稱:軟骨對軟骨摩擦潤滑性質測試平台之建立與研究
論文名稱(外文):Research and Testing Protocol Establishment of Tribological Properties between Cartilage-Cartilage Articulation
指導教授:方旭偉方旭偉引用關係
指導教授(外文):Hsu-Wei Fang
口試委員:許哲奇楊大毅陳文正
口試日期:20160714
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:生物摩擦、摩擦性質、關節軟骨
外文關鍵詞:FrictionCartilageBiotribology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
組織工程軟骨如果無法承受外在的應力,則會改變細胞活性及細胞外基質分解與合成間的平衡,進一步造成組織的退化,然而,軟骨如何因摩擦引發組織機械特性的變異,以及機械性質對組織間質與細胞型態變化產生的影響,目前仍不甚清楚。因此,評估組織工程軟骨之摩擦潤滑性質,變成一個課題,故本研究試圖建立一個軟骨摩擦潤滑性質的量測平台,利用豬之膝關節軟骨建立之體外摩擦測試方法,並使用表面形貌,不同速度以及不同潤滑液對摩擦性質的影響進行了探討。我的結果發現使用3D掃描將軟骨表面形貌分類後,與摩擦係數對時間的做圖中發現,表面形貌並不是影響摩擦係數的主要因素。接著當分別以PBS以及BCS做為潤滑液時,觀察到BCS組別的摩擦係數都略高於PBS組別。另比較不同速度對摩擦係數的影響中,觀察到速度3 mm/s的摩擦係數較小於速度1 mm/s的摩擦係數。
未來可使用此平台測量羊、牛、兔子的膝關節軟骨組織的摩擦潤滑性質,以及使用多種生醫材料製備成的組織工程軟骨、動物膝關節之不同環境下產生的摩擦潤滑性質,以提供比對參考的資料庫,將助於發展具有良好摩擦潤滑性質的功能性組織工程軟骨。此外,我們將會更進一步探討摩擦引發的組織機械變異、潤滑性質變化,以及摩擦對於細胞基質與組織生物學的影響,以作為組織工程軟骨功能性評估的參考。
If a tissue engineered cartilage cannot withstand the external stress, it will change the cell viability and the balance between extracellular matrix synthesis and degradation. This will lead to the degeneration of cartilage tissue. However, it is still unclear what the effects of biomechanical variation are when caused by tribology on tissue matrix and cell type. Evaluating the friction and lubricating properties of tissue engineering becomes a topic. This study developed an in vitro testing platform for detecting friction and lubricating properties of tissue engineered cartilage by using pig knee articular cartilage, and discussed the effect of surface geometry, different velocity and lubricants on friction properties of cartilage. In this study, we found the surface geometry was not a main factor to affect friction coefficient when testing coefficient in two seconds after the geometry of cartilage was classified by 3D scanning. I next compared the friction when using PBS or BCS as the lubricant, and observe the friction coefficient of BCS group was slightly higher than PBS group. When testing effect of different velocity on friction coefficient, I observed the friction coefficient of velocity of 3 mm/s was smaller than velocity of 1 mm/s.
In the future we plan to use this platform for measuring the friction and lubricating properties of knee articular cartilage, and obtaining data from goat, bovine and rabbit species will be assessed and verified. In addition, we will measure the friction and lubricating properties of tissue engineered cartilages prepared by various biomaterials combined with different culture environments. This will provide a useful database for references and benefit for developing the functional tissue engineered cartilage with excellent friction and lubricating properties. Moreover, we will investigate the changes in biomechanical and lubricative behaviors of the tissue under the stress during tribological process. These results will provide valuable references for functional tissue engineered cartilage.
摘 要 i
ABSTRACT ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
第二章 文獻回顧 2
2.1 關節軟骨基本構造與成份 2
2.2 軟骨潤滑機制 4
2.2.1 流體薄膜潤滑 5
2.2.2 自體增壓潤滑與靜力學潤滑 6
2.2.3 滲入潤滑 7
2.2.4 邊界潤滑 7
2.3 關節液 8
2.4 機械性質力學對軟骨組織與細胞影響 9
2.5 軟骨摩擦方法相關研究 10
第三章 關鍵問題與研究方法 17
3.1 關鍵問題 17
3.2 研究方法 19
3.2.1 3D形貌對摩擦行為的影響 19
3.2.2 速度對摩擦行為的影響 19
3.2.3 不同潤滑液對摩擦行為的影響 20
3.2.4不同軟骨厚度對摩擦性質影響 20
3.2.5不同軟骨組成成份對軟骨摩擦性質影響 20
第四章 材料與方法 22
4.1 材料準備 22
4.1.1 關節軟骨 22
4.1.2 生理緩衝液 24
4.1.3 小牛血清(Bovine Calf Serum) 24
4.2 軟骨體外摩擦性質測試方法建立 25
4.2.1 目的 25
4.2.2 實驗設備 25
4.2.3實驗材料及藥品 27
4.2.4實驗步驟 27
4.3 3D光學顯微鏡 29
4.3.1 目的 29
4.3.2 實驗設備 29
4.3.3 實驗材料 30
4.3.4 實驗步驟 31
4.4 實驗架構 33
第五章 結果與討論 34
5.1軟骨3D形貌對摩擦係數的影響 34
5.1.1實驗目的 34
5.1.2 3D形貌對摩擦係數的影響數據分析 34
5.2不同速度對軟骨摩擦性質影響 39
5.2.1實驗設計 39
5.2.2不同速度對軟骨摩擦性質影響數據分析(潤滑液:25v/v% BCS) 50
5.2.3不同速度對軟骨摩擦性質影響數據分析(潤滑液:1X PBS) 56
5.3不同潤滑液對軟骨摩擦性質影響 63
5.3.1不同潤滑液對軟骨摩擦性質影響數據分析 63
5.3.2不同潤滑液對軟骨組織之影響 65
5.4 不同軟骨樣品厚度對摩擦性質影響 70
5.5 不同軟骨組成成份對軟骨摩擦性質影響 78
第六章 結論與未來建議 82
參考文獻 84
[1] A.J. Gaudin, “Articulations: joints between bones,” Encyclopedia of Human Biology, vol. 1, 1991, pp. 371-376.
[2] M.J. Furey, “Tribology,” Encyclopedia of Materials Science and Engineering, vol. 7, 1986, pp. 5145-5157.
[3] T. Little, M. Freeman, S.A.V. Swanson, “Experiments on friction in the human hip joint,” Lubrication and Wear in Joints, 1969, pp. 110-116.
[4] H. Lipshitz, M.J. Glimcher, “In vitro studies of the wear of articular cartilage II. Characteristics of the wear of articular cartilage when worn against stainless steel plates having characterized surfaces,” Wear, vol. 52, 1979, pp. 297-339.
[5] G.W. Stachowiak, A.W. Batchelor, L.J. Griffiths, “Friction and wear changes in synovial joints,” Wear, vol. 171, 1994, pp. 135–142.
[6] A.M. Patel, M. Spector, “Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty,”
Biomaterials, vol. 18, 1997, pp. 441–447.
[7] M.C. Owellen, Biotribology: The effect of lubricant and load on articular cartilage wear and friction, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1997.
[8] M.J. Furey, Joint lubrication The Biomedical Engineering Handbook 2nd ed, CRC Press, Boca Raton, 2000.
[9] C.J. Schwartz, S. Bahadur, “Investigation of articular cartilage and counterface compliance in multi-directional sliding as in orthopedic implants,” Wear, vol. 262 2007, pp. 1315–1320.
[10] A. Verteramo, B.B. Seedhom, “Effect of a single impact loading on the structure and mechanical properties of articular cartilage,” J. Biomech, vol. 40, 2007, pp. 3580–3589.
[11] G.W. Stachowiak, P. Podsiadlo, “Analysis of wear particle boundaries found in sheep knee joints during in vitro wear tests without muscle compensation,” J. Biomech, vol. 30, 1997, pp. 415–419.
[12] S.L. Graindorge, G.W. Stachowiak, “Changes occurring in the surface morphology of articular cartilage during wear,” Wear, vol. 241, 2000, pp. 143–150.
[13] Z. Peng, “Osteoarthritis diagnosis using wear particle analysis technique: investigation of correlation between particle and cartilage surface in walking process,” Wear, vol. 262, 2007, pp. 630–640.
[14] 王世唏、陳德皓、徐至宏編譯,基礎組織學,台北:藝軒圖書出版社,1987.
[15] Margareta Nordin, Basic Biomechanics of the Musculoskeletal System,Williams and Wilkins Company, 2001.
[16] V.C. Mow, R Huiskes, Basic Orthopaedic Biomechanics and Mechano-Biology Third Edition, Philadelphia: Lippincott Williams and Wilkins, 2005.
[17] D. Marsh, "Lipid-protein interactions in membranes," FEBS Letters, vol. 268, 1990, pp. 371-375.
[18] A. Aurora, "Effect of Lubricant Composition on the Fatigue Properties of Ultra-High Molecular Weight Polyethylene for Total Knee Replacement," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 220, 2006, pp. 541-551.
[19] C. Herberhold, S. Faber , T. Stammberger , M. Steinlechner , R. Putz, KH. Englmeier, M. Reiser, F. Eckstein , “In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading,” J Biomech, vol. 32, 1999, pp. 1287-95.
[20] C.G. Armstrong, A.S. Bahrani, D.L. Gardner, “In vitro measurement of articular cartilage deformations in the intact human hip joint under load,” J Bone Joint Surg Am, vol. 61, 1979, pp. 744-55.
[21] H. Nötzli, J. Clark, “Deformation of loaded articular cartilage prepared for scanning electron microscopy with rapid freezing and freeze-substitution fixation,” J. Ortho Res, vol. 15, 1997, pp. 76-86.
[22] F. Guilak, R. Sah, L. Setton, “Physical regulation of cartilage metabolism. In: Mow V, Hayes W, editors,” Basic Ortho Biomech, 1997, pp. 179-207.
[23] A.J. Grodzinsky, M.E. Levenston, M. Jin, E.H. Frank, “Cartilage tissue remodeling in response to mechanical forces,” Annals of Biomedical Engineering, vol. 2, 2000, pp. 691-713.
[24] R. Krishnan, M. Caligaris, R.L. Mauck, C.T. Hung, K.D. Costa and G.A. Ateshian, “Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient,” OsteoArthritis Cartilage, vol. 12, 2004, pp. 947-955.
[25] R. Krishnan, E.N. Mariner, G.A. Ateshian, “Effect of dynamic loading on the frictional response of bovine articular cartilage,” J. Biomech, vol. 38, 2005, pp. 1665-1673.
[26] I.M. Basalo, F.H. Chen, C.T. Hung, G.A. Ateshian, “Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC,” J. Biomech. Eng, vol. 128, 2006, pp. 131-134.
[27] K.A. Elsaid, G.D. Jay, M.L. Warman, D.K. Rhee, C.O. Chichester, “Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis,” Arthritis Rrheum, vol. 52, 2005, pp. 1746-1755.
[28] C.J. Bell, E. Ingham, J. Fisher, “Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions,” Proc. Inst. Mech. Eng. Part H, vol. 220, 2006, pp. 23-31.
[29] M.P. Heuberger, M.R. Widmer , E. Zobeley, R. Glockshuber, N.D. Spencer, “Protein-mediated boundary lubrication in arthroplasty,” Biomaterials, vol. 26, 2005, pp. 1165-1173.
[30] T. Kitano, G.A. Ateshian, V.C. Mow, Y. Kadoya, Y. Yamano, “Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of
artificial articular joints,” J. Biomech, vol. 34, 2001, pp. 1031-1037.
[31] E.A. Tsvetkova, “Investigation of friction in a natural cartilage-microporous ultrahigh-molecular-weight polyethylene pair,” Mech. Compos. Mater., vol. 39, 2003, pp. 359-364.
[32] S. Park, C.T. Hung, G.A. Ateshian, “Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels,” OsteoArthritis Cartilage, vol. 12, 2004, pp. 65-73.
[33] M. H. Naka, K. Hattori, K. Ikeuchi, “Evaluation of the superficial characteristics of articular cartilage using evanescent caves in the friction test with intermittent
sliding and loading,” J. Biomech, vol. 25, 2005, pp. 1-7.
[34] T.P. Andriacchi, A. Mündermann, R.L. Smith, E.J. Alexander, C.O. Dyrby, S. Koo, “A framework for the in vivo pathomechanics of osteoarthritis at the knee,”
Annals of Biomedical Engineering, vol. 32, 2004, pp. 447-457.
[35] C.H. Chang, H.W. Fang, H.T. Huang, H.L. Liu, W.M. Lee, M.C. Hsieh, C.S. Chen, “Tribological process induced conformational transformation of protein may change the friction of cartilage” Materials Letter, vol. 61, 2007, pp. 3381-3384.
[36] S. Park, S.B. Nicoll, R.L. Mauck, G.A. Ateshian, “Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion” Annals of Biomedical Engineering, vol. 36, 2008, pp. 425–434.
[37] G. Verbernea, Y. Merkherb, G. Halperina, A. Maroudasb, I. Etsiona, "Techniques for assessment of wear between human cartilage surfaces" Wear, vol. 266, 2009, pp. 1216-1223.
[38] Z.M. Jin, M. Stone, E. Ingham, J. Fisher, "Biotribology," Current Orthopaedics, vol. 20, 2006, pp. 32-40.
[39] G.A. Ateshian, "The role of interstitial fluid pressurization in articular cartilage lubrication," J. Biomech, vol. 42, 2009, pp. 1163-1176.
[40] S.H. Qian, S.R. Ge, Q.L. Wang, “The Frictional Coefficient of Bovine Knee Articular Cartilage,” Journal of Bionic Engineering, vol. 3, 2006, pp. 79-85.
[41] S.M.T. Chana, C.P. Neua, K. Komvopoulosb, A.H. Reddia, “The role of lubricant entrapment at biological interfaces: Reduction of friction and adhesion in articular cartilage,” J. Biomech, vol. 44, 2011, pp. 2015-2020.
[42] R. Krishnana, E.N. Marinerb, G.A. Ateshiana, “Effect of dynamic loading on the frictional response of bovine articular cartilage,” J. Biomech, vol. 38, 2005, pp. 1665-1673.
[43] D.W. Lee, X. Banquya, J.N. Israelachvili, “Stick-slip friction and wear of articular joints,” Proceedings of the National Academy of sciences, vol. 110, 2012, pp. 567-574.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top