( 您好!臺灣時間:2021/05/17 05:31
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Hsing-Yu Chiang
論文名稱(外文):Design and Evaluation of Bi-Reforming Process Based Solid Oxide Fuel Cell Systems
中文關鍵詞:濕式重組;乾式重組;雙重組製程;固態氧化物燃料電池 ; 綠色能源科技
外文關鍵詞:et reforming; Dry reforming; Bi-reforming process; SOFC; Green energy technology
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池為現今重要替代能源之一,其中固態氧化物燃料電池(SOFC)因能量效率較高而具有發展潛力。SOFC通常需要配合預重組器提供其燃料來源,然而,傳統濕式預重組器的SOFC系統不但容易因內部重組影響電池效能與穩定性,還會產生二氧化碳造成環境汙染。為了避免內部重組與改善電池性能,本研究應用雙重組(濕式重組(SR)與乾式重組(DR))製程於固態氧化物燃料電池電力系統,並提出不同的設計架構。由於碳沉積的限制,各種架構分別具有最佳操作條件(回流比與進料比)。研究中針對所設計出的最適化系統就其電效率值與二氧化碳排放因子進行評估。結果顯示,串聯式預雙重組SR- DR-SOFC (Case B)為最佳設計架構。相較於傳統濕式預重組器的SOFC系統,此系統於同樣產生120kW的前提下,具有下列三方面優勢 : (1) 燃料進料量(甲烷)減少約24%;(2) 系統電效率值提升約30 %;(3) 系統整體二氧化碳排放因子降低約23%。此外,若於SOFC進料處進行除水將能額外增加10%的電效率值。因此,預雙重組器SOFC系統是對燃料電池效能提升及環境污染降低方面都相當具有價值的綠色能源技術。
Fuel cell is one of the most important technologies for alternative energy. Among the fuel cells, solid oxide fuel cell (SOFC) becomes a promising technology because of its higher energy efficiency. SOFC typically requires a pre-reformer for its fuel supply. However, in the traditional wet pre-reforming SOFC system, inevitable internal reforming not only affects the cell effectiveness and durability, but also causes environmental pollution due to carbon dioxide emission. To avoid internal reforming and improve the cell performance, this study applies the bi-reforming (steam reforming (SR) and dry reforming (DR)) process to SOFC system and proposes various design configurations. For each configuration, the corresponding operating conditions (recycle ratio and feed ratio) are optimized while taking the constraint of carbon deposition into account.Then, the optimal systems are evaluated by the electric efficiency and the emission fator of carbon dioxide. The results show that the series configuration with SR preceding DR (Case B) achieves the best performance. Compared with the traditional wet pre-reforming based SOFC system, this system has three predominant advantages (on the condition of producing 120kW): (1) reduce the feed of fuel (methane) about 24%; (2) improve the electric efficiency about 30%; (3) decrease the system emission factor of carbon dioxide about 23%. In addition, it is found that the system electric efficiency can be further increased by 10% when the water is removed from the SOFC inlet stream. Therefore, we can conclude that the novel bi-reforming based SOFC system is a valuable green energy technology in the light of improving fuel cell effectiveness and reducing environmental pollution.
摘要 I
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 5
1.4 章節組織 6
第2章 燃料電池系統 7
2.1 燃料電池簡化架構 7
2.2 預重組器(pre-reforming) 8
2.2.1 溼式重組製程(Steam Reforming , SR) 9
2.2.2 乾式重組製程(Dry Reforming , DR) 11
2.2.3 複合重組製程 12
2.3 燃料電池 13
2.3.1 燃料電池技術 14
2.3.2 燃料電池的種類與比較 15
2.3.3 固態氧化物燃料電池(SOFC)結構介紹 19
2.3.4 SOFC運作原理 22
2.4 尾燃器 24
第3章 SOFC電力系統之模擬 25
3.1 電力系統之元件原理與模擬 26
3.1.1 預重組器 27
3.1.2 SOFC 27
3.1.3 尾燃器 29
3.1.4 熱交換器 29
3.1.5 其他相關處理器 30
3.2 SOFC系統之模式 31
3.2.1 電池之相關經驗式 31
3.2.2 燃料使用率 34
3.2.3 相關變數定義 35
3.2.4 系統評估方法 37
第4章 SOFC電力系統之架構設計與結果分析 40
4.1 參數設定 40
4.2 傳統濕式預重組SOFC電力系統(Case A) 42
4.2.1 結果分析 43
4.3 串聯式預雙重組SR-DR-SOFC電力系統(Case B) 45
4.3.1 Case B 燃料轉化率結果分析 47
4.3.2 Case B 電效率結果分析 48
4.3.3 Case B CO2排放因子結果分析 50
4.4 串聯式預雙重組DR-SR-SOFC電力系統(Case C) 51
4.4.1 Case C 燃料轉化率結果分析 53
4.4.2 Case C 電效率結果分析 54
4.4.3 Case C CO2排放因子結果分析 57

4.5 並聯式預雙重組SR/DR-SOFC電力系統(Case D) 58
4.5.1 Case D 燃料轉化率結果分析 60
4.5.2 Case D 電效率結果分析 63
4.5.3 Case D CO2排放因子結果分析 68
4.6 最適化結果分析與比較 71
第5章 SOFC電力系統之除水效益 78
5.1 除水傳統濕式預重組SOFC電力系統 78
5.1.1 Dewatering Case A 電效率結果分析 80
5.1.2 Dewatering Case A with RR(AG) 電效率結果分析 81
5.2 除水DR-SR-SOFC with RT(SR) 電力系統 84
5.2.1 Dewatering Case C with RT(SR)電效率結果分析 85
5.3 除水DR-SR-SOFC with RT(SOFC) 電力系統 87
5.3.1 Dewatering Case C with RT(SOFC)電效率結果分析 88
5.4 除水SR/DR-SOFC with RT(SR) 電力系統 91
5.4.1 Dewatering Case D with RT(SR)電效率結果分析 91
5.5 除水SR/DR-SOFC with RT(SOFC) 電力系統 95
5.5.1 Dewatering Case D with RT(SOFC)電效率結果分析 96
5.6 最適化結果分析與比較 99
第6章 結論與未來展望 101
6.1 結論 101
6.2 未來展望 102
符號彙編 103
參考文獻 107
1.J. J. Ma, C. R. Jiang, P. A. Connor, M. Cassidy and J. T. S. Irvine, Highly efficient, coking-resistant sofcs for energy conversion using biogas fuels, Journal of Materials Chemistry A 3 (2015), no. 37, 19068-19076.
2.C. Willich, A. Tomaszewski, M. Henke, K. A. Friedrich and J. Kallo, Temperature effect due to internal reforming in pressurized sofc, Journal of the Electrochemical Society 161 (2014), no. 5, F674-F678.
3.K. Nikooyeh, A. A. Jeje and J. A. Hill, 3d modeling of anode-supported planar sofc with internal reforming of methane, Journal of Power Sources 171 (2007), no. 2, 601-609.
4.M. J. Kupilik and T. L. Vincent, Control of a solid oxide fuel cell system with sensitivity to carbon formation, Journal of Power Sources 222 (2013), 267-276.
5.T. Chen, W. G. Wang, H. Miao, T. S. Li and C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, Journal of Power Sources 196 (2011), no. 5, 2461-2468.
6.J. Kifilman, J. Sucipto, N. Kaisalo, P. Simell and J. Lehtonen, Carbon formation in catalytic steam reforming of natural gas with sofc anode off-gas, International Journal of Hydrogen Energy 40 (2015), no. 3, 1548-1558.
7.R. Peters, R. Deja, L. Blum, J. Pennanen, J. Kiviaho and T. Hakala, Analysis of solid oxide fuel cell system concepts with anode recycling, International Journal of Hydrogen Energy 38 (2013), no. 16, 6809-6820.
8.C. Guerra, A. Lanzini, P. Leone, M. Santarelli and N. P. Brandon, Optimization of dry reforming of methane over ni/ysz anodes for solid oxide fuel cells, Journal of Power Sources 245 (2014), 154-163.
9.M. Jahn, M. Heddrich, A. Weder, E. Reichelt and R. Lange, Oxidative dry-reforming of biogas: Reactor design and sofc system integration, Energy Technology 1 (2013), no. 1, 48-58.
10.W. Wu, C. Tungpanututh and H. T. Yang, A conceptual design of a stand-alone hydrogen production system with low carbon dioxide emissions, International Journal of Hydrogen Energy 37 (2012), no. 13, 10145-10155.
11.S. T. Oyama, P. Hacarlioglu, Y. F. Gu and D. Lee, Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors, International Journal of Hydrogen Energy 37 (2012), no. 13, 10444-10450.
12.P. Pianko-Oprych, T. Zinko and Z. Jaworski, Simulation of the steady-state behaviour of a new design of a single planar solid oxide fuel cell, Polish Journal of Chemical Technology 18 (2016), no. 1, 64-71.
13.F. Manenti, R. Pelosato, P. Vallevi, A. R. Leon-Garzon, G. Dotelli, A. Vita, M. Lo Faro, G. Maggio, L. Pino and A. S. Arico, Biogas-fed solid oxide fuel cell (sofc) coupled to tri-reforming process: Modelling and simulation, International Journal of Hydrogen Energy 40 (2015), no. 42, 14640-14650.
14.V. N. Nguyen, R. Deja, R. Peters and L. Blum, Methane/steam global reforming kinetics over the ni/ysz of planar pre-reformers for sofc systems, Chemical Engineering Journal 292 (2016), 113-122.
15.X. Yang, J. W. Da, H. T. Yu and H. Wang, Characterization and performance evaluation of ni-based catalysts with ce promoter for methane and hydrocarbons steam reforming process, Fuel 179 (2016), 353-361.
16.W. L. Luyben, Design and control of the dry methane reforming process, Industrial & Engineering Chemistry Research 53 (2014), no. 37, 14423-14439.
17.B. Stolze, J. Titus, S. A. Schunk, A. Milanov, E. Schwab and R. Glaser, Stability of ni/sio2-zro2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide, Frontiers of Chemical Science and Engineering 10 (2016), no. 2, 281-293.
18.G. Y. Chen, J. G. Yao, J. Liu, B. B. Yan and R. Shan, Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil, Renewable Energy 91 (2016), 315-322.
19.E. Garcia-Diez, F. Garcia-Labiano, L. F. de Diego, A. Abad, P. Gayan, J. Adanez and J. A. C. Ruiz, Optimization of hydrogen production with co2 capture by autothermal chemical-looping reforming using different bioethanol purities, Applied Energy 169 (2016), 491-498.
20.R. H. Yuan, Z. Y. He, Y. Zhang, W. D. Wang and C. S. Chen, Partial oxidation of methane to syngas in a packed bed catalyst membrane reactor, Aiche Journal 62 (2016), no. 6, 2170-2176.
21.J. Titus, T. Roussiere, G. Wasserschaff, S. Schunk, A. Milanov, E. Schwab, G. Wagner, O. Oeckler and R. Glaser, Dry reforming of methane with carbon dioxide over nio-mgo-zro2, Catalysis Today 270 (2016), 68-75.
22.B. Canete, C. E. Gigola and N. B. Brignole, Synthesis gas processes for methanol production via ch4 reforming with co2, h2o, and o-2, Industrial & Engineering Chemistry Research 53 (2014), no. 17, 7103-7112.
23.J. Yoo, Y. Bang, S. J. Han, S. Park, J. H. Song and I. K. Song, Hydrogen production by tri-reforming of methane over nickel-alumina aerogel catalyst, Journal of Molecular Catalysis a-Chemical 410 (2015), 74-80.
24.G. A. Olah, A. Goeppert, M. Czaun, T. Mathew, R. B. May and G. K. S. Prakash, Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (co-2h(2)) for methanol synthesis: Self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen, Journal of the American Chemical Society 137 (2015), no. 27, 8720-8729.
25.N. Kumar, A. Roy, Z. Wang, E. M. LAbbate, D. Haynes, D. Shekhawat and J. J. Spivey, Bi-reforming of methane on ni-based pyrochlore catalyst, Applied Catalysis a-General 517 (2016), 211-216.
26.H. Wang, R. Z. Feng, H. L. Duan and A. D. Chen, Study on sub-cooler based on the characteristics of the super hydrophobic surface, Experimental Thermal and Fluid Science 76 (2016), 205-210.
27.X. L. Wang, Y. H. Zhang, B. J. Qi, J. F. Zhao and J. J. Wei, Experimental study of the heater size effect on subcooled pool boiling heat transfer of fc-72 in microgravity, Experimental Thermal and Fluid Science 76 (2016), 275-286.
28.V. Liso, Y. R. Zhao, W. Y. Yang and M. P. Nielsen, Modelling of a solid oxide fuel cell chp system coupled with a hot water storage tank for a single household, Energies 8 (2015), no. 3, 2211-2229.
29.R. K. Akikur, R. Saidur, H. W. Ping and K. R. Ullah, Performance analysis of a co-generation system using solar energy and sofc technology, Energy Conversion and Management 79 (2014), 415-430.
30.A. Yoshida, K. Ito and Y. Amano, Energy-saving evaluation of sofc cogeneration systems with solar cell and battery, Journal of Fuel Cell Science and Technology 11 (2014), no. 6, 7.
31.K. J. Albrecht, R. J. Braun and Asme, Dynamic modeling of sofc cogeneration systems for light commercial applications, Proceedings of the Asme 12th Fuel Cell Science, Engineering and Technology Conference, 2014 (2014), 10.
32.J. X. Jia, A. Abudula, L. M. Wei and Y. Shi, Performance comparison of three solid oxide fuel cell power systems, International Journal of Energy Research 37 (2013), no. 14, 1821-1830.
33.J. Kupecki, J. Milewski and J. Jewulski, Investigation of sofc material properties for plant-level modeling, Central European Journal of Chemistry 11 (2013), no. 5, 664-671.
34.W. Zhang, E. Croiset, P. L. Douglas, M. W. Fowler and E. Entchev, Simulation of a tubular solid oxide fuel cell stack using aspenplus((tm)) unit operation models, Energy Conversion and Management 46 (2005), no. 2, 181-196.
35.A. Amiri, P. Vijay, M. O. Tade, K. Ahmed, G. D. Ingram, V. Pareek and R. Utikar, Solid oxide fuel cell reactor analysis and optimisation through a novel multi-scale modelling strategy, Computers & Chemical Engineering 78 (2015), 10-23.
36.T. Anderson, P. Vijay and M. O. Tade, An adaptable steady state aspen hysys model for the methane fuelled solid oxide fuel cell, Chemical Engineering Research & Design 92 (2014), no. 2, 295-307.
37.M. Halinen, O. Thomann and J. Kiviaho, Effect of anode off-gas recycling on reforming of natural gas for solid oxide fuel cell systems, Fuel Cells 12 (2012), no. 5, 754-760.
38.J. X. Jia, Q. A. Li, M. Luo, L. M. Wei and A. Abudula, Effects of gas recycle on performance of solid oxide fuel cell power systems, Energy 36 (2011), no. 2, 1068-1075.
39.F. Wang, Y. D. Cao and J. Zhou, Thermodynamic analysis of high-temperature helium heated fuel reforming for hydrogen production, International Journal of Energy Research 39 (2015), no. 3, 418-432.
40.S. A. Chattanathan, S. Adhikari, M. McVey and O. Fasina, Hydrogen production from biogas reforming and the effect of h2s on ch4 conversion, International Journal of Hydrogen Energy 39 (2014), no. 35, 19905-19911.
41.S. G. Gopaul, A. Dutta and R. Clemmer, Chemical looping gasification for hydrogen production: A comparison of two unique processes simulated using aspen plus, International Journal of Hydrogen Energy 39 (2014), no. 11, 5804-5817.
42.W. Doherty, A. Reynolds and D. Kennedy, Simulation of a tubular solid oxide fuel cell stack operating on biomass syngas using aspen plus, Journal of the Electrochemical Society 157 (2010), no. 7, B975-B981.
43.Doherty, W., A. Reynolds, and D. Kennedy, Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy, 2010. 35(12): p. 4545-4555.
44.H. B. Zhao, T. Jiang and H. C. Hou, Performance analysis of the sofc-cchp system based on h2o/li-br absorption refrigeration cycle fueled by coke oven gas, Energy 91 (2015), 983-993.
45.S. Campanari, Thermodynamic model and parametric analysis of a tubular sofc module, Journal of Power Sources 92 (2001), no. 1-2, 26-34.
46.L. Barelli and A. Ottaviano, Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced co2 emissions, Energy 71 (2014), 118-129.
47.J. Baltrusaitis and W. L. Luyben, Methane conversion to syngas for gas-to-liquids (gtl): Is sustainable co2 reuse via dry methane reforming (dmr) cost competitive with smr and air processes?, Acs Sustainable Chemistry & Engineering 3 (2015), no. 9, 2100-2111.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top