(3.235.25.169) 您好!臺灣時間:2021/04/17 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱俊銘
研究生(外文):Chun-Ming Chiu
論文名稱:三維花狀硫化鈷合成與其超電容性能探討
論文名稱(外文):Synthesis of three-dimensional flower-like cobalt sulfide hierarchical architectures for supercapacitors
指導教授:林律吟
口試委員:許哲奇孫嘉良何國川
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
中文關鍵詞:硫化鈷、發泡鎳、奈米花狀、碳層、超級電容器
外文關鍵詞:Cobalt SulfideNickel FoamNanoflowerCarbon LayerSupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於其優異的物理與化學性質,不同型態的金屬硫化物受到廣泛的應用與探討。本研究提出快速且簡易的方法,製備三維花狀硫化鈷奈米結構(three-dimensional flower-like cobalt sulfide),並探討合成過程中十二烷硫醇的反應溫度、時間以及硫化鈷合成過程中的反應氣體環境、退火溫度,對於硫化鈷型態及其與應用於超級電容器上性能的影響。本研究也藉由掃描式與穿透式電子顯微鏡的影像觀察,來解釋三維花狀硫化鈷的自組裝過程。另外,本研究亦使用循環伏安法與恆電流充放電分析,來評估此硫化鈷超級電容器電極在6 M的氫氧化鉀電解液中的仿電容性能。研究發現,當發泡鎳上硫化鈷承載量達12.5 mg,可得到最大電容值為1010 F g-1。此優異的電化學性能,可歸因於提供高表面積的硫化鈷二維花辦,以及其外圍具高導電度的碳層。此外,經由700圈循環充放電測試後,此電極仍可保持高對稱性的充放電曲線及534 F g-1的比電容值,顯示其良好的可逆性。本研究結果證實,此花狀硫化鈷電極於超級電容器的應用將具有良好的前景與未來發展性。
In recent years, metal sulfides with various morphologies have attracted much attention due to their outstanding physical and chemical properties. In this study, a facile and rapid method is used to prepare three-dimensional (3D) flower-like Co9S8 hierarchitectures. The factors to influence the morphology and the corresponding supercapacitor (SC) performance are investigated, including the reaction temperature and time for dodecanethiol, as well as the annealing temperature and the atmosphere for synthesizing cobalt sulfide nanostructures. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) observations, a self-assembly process is proposed to explain the formation of the 3D flower-like Co9S8 hierarchitectures. In addition, the pseudocapacitive properties of the Co9S8 nanoflower SC electrode are evaluated by cyclic voltammetry and galvanostatic charge-discharge tests in a 6 M KOH electrolyte. It was found that the maximum specific capacitance(CF) of 1010 F g-1 can be achieved when 12.5 mg 3D flower-like cobalt sulfide was loaded on the flexible Ni foam (1 cm2) as the SC electrode. This outstanding electrochemistry performance can be attributed to the high specific surface area and high conductivity benefited from the two-dimensional (2D) flower petals and the carbon layer, respectively. Furthermore, this SC electrode also shows good electrochemical reversibility since its charge-discharge curves present nearly symmetrical shapes and the CF still remains 534 F g-1 after 700 charge-discharge cycles test. The results demonstrate that the Co9S8 nanoflower is quite promising to be considered as a highly efficient active material for SCs.
目 錄
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
第二章 文獻回顧 3
2.1 硫化鈷(Cobalt sulfide)簡介 3
2.1.1 基本特性 3
2.1.2 製備方法 4
2.1.2.1 溶劑熱法(Solvothermal synthesis) 4
2.1.2.2 水熱法(Hydrothermal synthesis) 5
2.1.2.3 熔鹽法(Molten-salt synthesis) 6
2.1.3 電化學應用 8
2.1.3.1 染料敏化太陽能電池(Dye-sensitized solar cells) 8
2.1.3.2 催化劑(Catalyst) 10
2.1.3.3 鋰電池(Lithium ion batteries) 11
2.1.3.4 超級電容器(Supercapacitors) 13
2.2 電化學電容器(Electrochemical capacitor)簡介 17
2.2.1 電極製備方法 17
2.2.1.1 滴鑄法(Drop casting method) 17
2.2.1.2 化學浴沉積法(Chemical bath deposition ) 17
2.2.1.3 噴塗沉積法(Spray deposition) 17
2.2.1.4 刮刀塗佈法(Doctor-blade method) 18
2.2.1.5 壓錠法(Compression method) 19
2.2.1.6 電化學沉積(Electrochemical deposition) 20
2.2.2 電催化反應(Electrocaltalytic reaction)簡介 20
第三章 儀器設備及研究方法 21
3.1 實驗部分 21
3.1.1 實驗藥品 21
3.1.2 實驗儀器 22
3.1.3 實驗流程 29
3.1.4 反應機制 30
3.2 實驗原理與分析方法 31
3.2.1 循環伏安法(Cyclic voltammetry, CV) 31
3.2.1.1 實驗原理 31
3.2.1.2 實驗方法 32
3.2.1.3 實驗裝置 33
3.2.2 電化學交流阻抗分析法(Electrochemical impedance spectroscopy, EIS) 34
3.2.2.1 實驗原理 34
3.2.2.2 實驗方法 34
3.2.2.3 實驗裝置 35
3.2.3 恆電流充放電測試(Galvanostatic charge-discharge measurement) 36
3.2.3.1 實驗原理 36
3.2.3.2 實驗方法 37
3.2.3.3 實驗裝置 38
3.3 實驗儀器簡介 39
3.3.1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 39
3.3.1.1 操作原理 39
3.3.1.2 實驗方法 39
3.3.1.3 實驗裝置 39
3.3.2 穿透式電子顯微鏡(Transmission electron microscope, TEM) 40
3.3.2.1 操作原理 40
3.3.2.2 實驗方法 40
3.3.2.3 實驗裝置 42
3.3.3 X-ray繞射儀(X-ray diffraction, XRD) 43
3.3.3.1 操作原理 43
3.3.3.2 實驗方法 44
3.3.3.3 實驗裝置 44
3.3.4 Brunauer–Emmett–Teller(BET)表面積測試 45
3.3.4.1 操作原理 45
3.3.4.2 實驗方法 45
3.3.4.3 實驗裝置 46
第四章 結果與討論 47
4.1 硫化鈷型態與電催化性能之關係 47
4.1.1 氣體流通環境 47
4.1.1.1 氬氣與空氣下之合成產物性能分析 47
4.1.2 反應溫度 51
4.1.2.1 不同硫化溫度之硫化鈷型態分析 51
4.1.2.2 不同硫化溫度製備硫化鈷之超電容電極性能分析 54
4.1.3 硫化反應時間 59
4.1.3.1 不同硫化反應時間製備硫化鈷之型態分析 59
4.1.3.2 不同硫化反應時間製備硫化鈷之超電容電極性能分析 60
4.1.4 退火溫度 65
4.1.4.1 不同退火溫度下製備硫化鈷之型態分析 65
4.1.4.2 不同退火溫度下製備硫化鈷之超電容電極性能分析 66
4.1.5 承載質量 72
4.1.5.1 不同承載質量之性能分析 72
4.1.6 最佳值 78
4.1.6.1 表面型態分析 78
4.1.6.2 最佳製備條件之硫化鈷超電容電極電化學性能分析 80
4.2 本研究結果與文獻比較 87
第五章 結論與建議 88
5.1 結論 88
5.2 建議 89
參考文獻 90
附錄 97
A:本研究硫化鈷超電容電極製備 97
符號彙編 98
[1]台灣松下, http://discovery.panasonic.com.tw/electricity/lab/lab10bat/l100201.html
[2]Conway, B. E.著; 陳艾、吳孟強、張緒禮、高能武等譯,電化學超級電容器-科學原理及技術應用,北京: 化學工業出版社,2005,第12頁。
[3]Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25 (40), 5807-5813.
[4]Tai, S. Y.; Lu, M. N.; Ho, H. P.; Xiao, Y.; Lin, J. Y., Investigation of carbon nanotubes decorated with cobalt sulfides of different phases as nanocomposite catalysts in dye-sensitized solar cells. Electrochim. Acta 2014, 143, 216-221.
[5]Lin, J. Y.; Liao, J. H.; Chou, S. W., Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2011, 56 (24), 8818-8826.
[6]Yang, J.; Bao, C.; Zhu, K.; Yu, T.; Li, F.; Liu, J.; Li, Z.; Zou, Z., High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells. Chem. Commun. 2014, 50 (37), 4824-4826.
[7]Kong, S.; Jin, Z.; Liu, H.; Wang, Y., Morphological effect of graphene nanosheets on ultrathin CoS nanosheets and their applications for high-performance Li-ion batteries and photocatalysis. J. Phys. Chem. C 2014, 118 (44), 25355-25364.
[8]Jin, R.; Liu, J.; Xu, Y.; Li, G.; Chen, G., Solvothermal synthesis and excellent electrochemical performance of polycrystalline rose-like Co9S8 hierarchical architectures. J. Mater. Chem. A 2013, 1 (27), 7995-7999.
[9]Shi, W.; Zhu, J.; Rui, X.; Cao, X.; Chen, C.; Zhang, H.; Hng, H. H.; Yan, Q., Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced Li storage performances. ACS Appl. Mater. Interfaces 2012, 4 (6), 2999-3006.
[10]Jiang, Z.; Lu, W.; Li, Z.; Ho, K. H.; Li, X.; Jiao, X.; Dairong, C., Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 8603-8606.
[11]Qu, B.; Chen, Y.; Zhang, M.; Hu, L.; Lei, D.; Lu, B.; Li, Q.; Wang, Y.; Chen, L.; Wang, T., beta-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 2012, 4 (24), 7810-7816.
[12]Du, W.; Wang, Z.; Zhu, Z.; Hu, S.; Zhu, X.; Shi, Y.; Pang, H.; Qian, X., Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2014, 2 (25), 9613-9619.
[13]Banerjee, A.; Upadhyay, K. K.; Bhatnagar, S.; Tathavadekar, M.; Bansode, U.; Agarkar, S.; Ogale, S. B., Nickel cobalt sulfide nanoneedle array as an effective alternative to Pt as a counter electrode in dye sensitized solar cells. RSC Adv. 2014, 4 (16), 8289-8294.
[14]Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L.; Hagfeldt, A.; Ma, T., Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 2011, 13 (43), 19298-19301.
[15]Wan, H.; Ji, X.; Jiang, J.; Yu, J.; Miao, L.; Zhang, L.; Bie, S.; Chen, H.; Ruan, Y., Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors. J. Power Sources 2013, 243, 396-402.
[16]Huang, K. J.; Zhang, J. Z.; Shi, G. W.; Liu, Y. M., One-step hydrothermal synthesis of two-dimensional cobalt sulfide for high-performance supercapacitors. Mater. Lett. 2014, 131, 45-48.
[17]Wang, Q.; Jiao, L.; Du, H.; Peng, W.; Han, Y.; Song, D.; Si, Y.; Wang, Y.; Yuan, H., Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. J. Mater. Chem. 2011, 21 (2), 285-568.
[18]Luo, F.; Li, J.; Yuan, H.; Xiao, D., Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors. Electrochim. Acta 2014, 123, 183-189.
[19]Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y., Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells. ACS Nano 2013, 7, 9443-9451.
[20]Sidik, A. R.; Anderson, A. B., Co9S8 as a catalyst for electroreduction of O2: Quantum chemistry predictions. J. Phys. Chem. B 2006, 110, 936-941.
[21]Geller, S.; Refinement of the crystal structure of Co9S8. Acta Crystallogr. 1962, 15, 1195–1198.
[22]Dong, W.; Wang, X.; Li, B.; Wang, L.; Chen, B.; Li, C.; Li, X.; Zhang, T.; Shi, Z., Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Trans. 2011, 40 (1), 243-248.
[23]Wang, Q.; Jiao, L.; Du, H.; Yang, J.; Huan, Q.; Peng, W.; Si, Y.; Wang, Y.; Yuan, H., Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm 2011, 13 (23), 6960-6963.
[24]Ji, Y.; Liu, X.; Liu, W.; Wang, Y.; Zhang, H.; Yang, M.; Wang, X.; Zhao, X.; Feng, S., A facile template-free approach for the solid-phase synthesis of CoS2 nanocrystals and their enhanced storage energy in supercapacitors. RSC Adv. 2014, 4 (91), 50220-50225.
[25]Pu, J.; Wang, Z.; Wu, K.; Yu, N.; Sheng, E., Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16 (2), 785-791.
[26]Huang, K. L.; Liu, R. S.; Yang, Y. P.; Liu, S. Q.; Wang, L. P., Shape controlled synthesis and formation mechanismof Co3O4 by solvothermal method. Acta Phys. Chim. 2007, 23, 655-658.
[27]Gu, Y.; Xu, Y.; Wang, Y., Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 2013, 5, 801-806.
[28]Que, M.; Guo, W.; Zhang, X.; Li, X.; Hua, Q.; Dong, L.; Pan, C., Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. J. Mater. Chem. A 2014, 2 (33), 13661-13666.
[29]Bi, E.; Chen, H.; Yang, X.; Peng, W.; Grätzel, M.; Han, L., A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci.2014, 7 (8), 2637-2641.
[30]Wang, Z.; Chen, X.; Zhang, M.; Qian, Y., Synthesis of Co3O4 nanorod bunches from a single precursor Co(CO3)0.35Cl0.20(OH)1.10. Solid State Sci. 2005, 7 (1), 13-15.
[31]Lin, J. Y.; Tai, S. Y.; Chou, S. W., Bifunctional one-dimensional hierarchical nanostructures composed of cobalt sulfide nanoclusters on carbon nanotubes backbone for dye-sensitized solar cells and supercapacitors. J. Phys. Chem. C 2014, 118 (2), 823-830.
[32]Wang, G.; Zhang, J.; Kuang, S.; Liu, S.; Zhuo, S., The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells. J. Power Sources 2014, 269, 473-478.
[33]Rakhi, R. B.; Alhebshi, N. A.; Anjum, D. H.; Alshareef, H. N., Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J. Mater. Chem. A 2014, 2 (38), 16190-16198.
[34]Kung, C. W.; Chen, H. W.; Lin, C. Y.; Huang, K. C.; Vittal, R.; Ho, K. C., CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 2012, 6, 7016-7025.
[35]Chen, H. W.; Kung, C. W.; Tseng, C. M.; Wei, T. C.; Sakai, N.; Morita, S.; Ikegami, M.; Miyasaka, T.; Ho, K. C., Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode. J. Mater. Chem. A 2013, 1 (44), 13759-13768.
[36]Xiao, Y.; Wu, J.; Lin, J. Y.; Tai, S. Y.; Yue, G., Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. J. Mater. Chem. A 2013, 1 (4), 1289-1295.
[37]Liu, S.; Wang, J.; Wang, J.; Zhang, F.; Liang, F.; Wang, L., Controlled construction of hierarchical Co1−xS structures as high performance anode materials for lithium ion batteries. CrystEngComm 2014, 16 (5), 814-819.
[38]Wan, H. Z.; Jiang, J. J.; Yu, J. W.; Ruan, Y. J.; Peng, L.; Zhang, L.; Chen, H. C.; Bie, S. W., Cobalt sulfide nanotube arrays grown on FTO and graphene membranes for high-performance supercapacitor application. Appl. Surf. Sci. 2014, 311, 793-798.
[39]王家偉,陽極複合沉積釕系氧化物電極材料於超級電容器之應用,碩士論文,國立清華大學化學工程研究所,新竹,2011。
[40]Mulmudi, H. K.; Batabyal, S. K.; Rao, M.; Prabhakar, R. R.; Mathews, N.; Lam, Y. M.; Mhaisalkar, S. G., Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs). Phys. Chem. Chem. Phys. 2011, 13 (43), 19307-19309.
[41]Lin, C. Y.; Mersch, D.; Jefferson, D. A.; Reisner E., Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes. Chem. Sci. 2014, 5, 4906-4913.
[42]Sun, L.; Bai, Y.; Sun, K., Organic molecule controlled synthesis of three dimensional rhododendron-like cobalt sulfide hierarchitectures as counter electrodes for dyesensitized solar cells. RSC Adv. 2014, 4, 42087-42091.
[43]Dai, K.; Li, D.; Lu, L.; Liu, Q.; Lv, J.; Zhu, G., Facile synthesis of a reduced graphene oxide/cobalt sulfide hybrid and its electrochemical capacitance performance. RSC Adv. 2014, 4 (55), 29216-29222.
[44]Chen, W.; Xia, C.; Alshareef, H. N., One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 2014, 8, 9531-9541.
[45]吳輝煌,電化學,北京: 化學工業出版社,2004,第74頁。
[46]何昆政,化學與電化學法製備銀奈米粒子及其催化應用,碩士論文,國立臺北科技大學化學工程研究所,臺北,2009。
[47]Lin, L. Y.; Yeh, M. H.; Tsai, J. T.; Huang, Y. H.; Sun, C. L.; Ho, K. C., A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J. Mater. Chem. A 2013, 1 (37), 11237-11245.
[48]曹楚南、張鑒清,電化學阻抗譜導論,北京: 科學出版社,2002,第21頁。
[49]Conway, B. E.著; 陳艾、吳孟強、張緒禮、高能武等譯,電化學超級電容器-科學原理及技術應用,北京: 化學工業出版社,2005,第552頁。
[50]藍泰仰,染料敏化太陽能電池工作電極之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2010。
[51]吳明徽,氧化鈷/鈷赤血鹽與銅/鈷/鎳赤血鹽複合薄膜製備、特性及其對聯氨、羥胺的電催化性質之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2006年。
[52]鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,臺灣: 滄海書局,2008,第23, 114頁。
[53]陳培榕、李景虹、鄭勃,現代儀器分析實驗與技術-第二版,北京:清華大學出版社,2006,第349頁。
[54]王誠華,製備高比表面積四氧化三錳粉末之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2009。
[55]林麗娟,X光繞射原理及其應用,工業材料86期,83年2月,第100頁。
[56]Srinivasa Rao, S.; Gopi, C. V. V. M.; Kim, S. K.; Son, M. K.; Jeong, M. S.; Savariraj, A. D.; Prabakar, K.; Kim, H. J., Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 2014, 133, 174-179.
[57]Ding, S.; Chen, J. S.; Lou, X. W., Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem. Eur. J. 2011, 17 (47), 13142-13145.
[58]Mao, M.; Mei, L.; Wu, L.; Li, Q.; Zhang, M., Facile synthesis of cobalt sulfide/carbon nanotube shell/core composites for high performance supercapacitors. RSC Adv. 2014, 4 (23), 12050-12056.
[59]Mullin, J.W., Crystallization, Fourth Edition, Butterworth Heinemann, Oxford, 2001.
[60]陳重守,以結晶技術系統化篩選藥物的多晶型研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2006年。
[61]Ramachandran, R.; Saranya, M.; Santhosh, C.; Velmurugan, V.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N., Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors. RSC Adv. 2014, 4 (40), 21151-21162.
[62]Tao, F.; Zhao, Y.Q.; Zhang, G.Q.; Li, H. L., Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem. Commun. 2007, 9 (6), 1282-1287.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔