(3.236.100.86) 您好!臺灣時間:2021/05/06 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐詩芸
研究生(外文):Shih-Yun Hsu
論文名稱:前驅滲透薄膜於氫氧化四甲基銨(TMAH)濃縮資源化之研究
論文名稱(外文):Application of Forward osmosis for recovery of Tetra-methyl ammonium hydroxide
指導教授:陳孝行陳孝行引用關係
口試委員:徐宏德
口試委員(外文):李奇旺
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:前驅滲透、驅動液、醋酸鈉、氫氧化四甲基銨
外文關鍵詞:Forward osmosisDraw solutionsodium acetateTMAH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正滲透程序(Forward osmosis, FO)是一種利用溶液滲透壓差驅動的薄膜技術,與傳統薄膜程序如RO、NF 膜等比較,有著無需外加壓力的優點,能同樣使用薄膜程序卻大幅降低能量消耗;相較於進流濾液(Feed solution, FS)的濃度,具有較高濃度的驅動液(Draw solution, DS)扮演形成壓力梯度的角色,是目前國際上水處理及薄膜領域最關切的研究議題。氫氧化四甲基胺(Tetra-methyl ammonium hydroxide, TMAH)於半導體及TFT-LCD製程中,經常被利用作為顯影液中主要的成分,用以除去曝光後不需要的光阻劑未經妥善處理,即被當作廢液排出,若在這些廢溶液排入河川前未能有效淨化,則會造成水域生態失衡等嚴重危害,而且TMAH為具有毒性及腐蝕性的強鹼溶液,會經由皮膚吸收,或是過度暴露於TMAH下,也會對人體會產生傷害。
本研究論文以氫氧化四甲基胺為進流濾液(FS),NaCl、CH3COONa、MgCl2及CuSO4為驅動液(DS),測試不同類型複合式薄膜(Thin-Film Composite, TFC)FO薄膜,探討FO薄膜於不同驅動液(CH3COONa /NaCl/MgCl2及CuSO4)的滲透水流通量、反滲透通量、滲透壓等彼此間的變化關係,以及氫氧化四甲基胺之濃縮效益;再者藉由薄膜表面SEM分析觀察FO薄膜阻塞狀況。由本研究論文初步研究成果得知:於pH值8之CH3COONa溶液為驅動液,其水流通量為19.34 L/m2h略高於NaCl溶液單價鹽類之17.44 L/m2h之水流通量,且CH3COONa溶液反滲透通量為1.7 g/m2h,遠低於NaCl溶液5.0 g/m2h,此時選擇CH3COONa溶液進行氫氧化四甲基胺的濃縮效率之實驗,達到場內顯影劑回收在利用或作為焚化廠不需添加輔助燃料的熱值使用,被稀釋後驅動液NaCl、CH3COONa、MgCl2與CuSO4於薄膜蒸餾(MD)回收過濾程序,在聚四氟乙烯(PTFE)擁有孔徑的0.45μm MD膜中,流量為1700 ml/min,分別的55℃進料溫度和20℃的餾出溫度為再生控制條件下回收效率。
Forward osmosis (FO) has emerged as one of potential technologies to mitigate clean water and energy shortage. However, so far, the development of FO technology is still hindered by the unavailability of suitable draw solutions and the exploration of new draw solutes is vital for future FO applications. In the photolithography process of semiconductor or LCD (liquid crystal display) manufacturing, a large amount of developer is used and a large amount of developer wastewater is generated. The principal ingredient of the developer and its wastewater is toxic TMAH (tetramethyl ammonium hydroxide; (CH3)4NOH). This nitrogenous compound creates a problem wastewater. With the increasing use of TMAH in the semiconductor industry, however, the wastewater disposal problem is becoming serious, and the need for an efficient, inexpensive method of treating TMAH wastewater is becoming increasingly urgent. In this study, the performance of sodium acetate salt as draw solution in the FO process for dewatering TMAH was symmetrically investigated. Firstly, the effects of pH, cross-flow rate and draw solution concentration on the FO process were evaluated with deionized (DI) water as the feed solution. Next, simultaneous TMAH removal of FO was examined. The good solubility species of sodium acetate salt not only provided effective osmotic pressure to draw water from TMAH, but also reduced salt leakage significantly compared to traditional inorganic salts (NaCl). In addition, FO tests showed that using 1.0 M sodium acetate salt as draw solution for TMAH dewatering achieved a high water flux within the first hour and then water flux decreased sharply with the extension of experiment time. MD membranes were selected for draw solution recovery; a polytetrafluoroethylene membrane with a pore size of 0.45 μm was the most effective in achieving a high water flux (8.99 L/m2 h) and high salt rejection (approximately 100%) in a diluted CH3COONa draw solution.
目錄

摘 要 I
Abstract III
目錄 VI
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1研究緣起 1
1.2研究內容 3
1.3研究目的 4
第二章 文獻回顧 7
2.1前驅滲透(Forward Osmosis)程序簡介 7
2.1.1 前驅滲透薄膜基本原理與特性 7
2.1.2前驅滲透驅動液之比較與應用 9
2.1.3 前驅滲透膜之濃度極化 11
2.2氫氧化四甲基銨廢液來源 16
2.2.1 廢液危害性及產量 20
2.3 氫氧化四甲基銨廢液處理技術 23
2.3.1 回收再利用 23
2.3.2 化學氧化法 24
2.3.3 生物處理法 24
2.3.4 電透析法 25
2.3.5 薄膜分離處理法 25
第三章 實驗方法與設備 31
3.1 實驗內容 31
3.2 實驗設計 34
3.3 實驗材料與設備 35
3.3.1實驗設備 35
3.3.2實驗藥品 36
3.4實驗分析與方法 37
3.4.1掃描式電子顯微鏡(SEM) 37
3.4.2陰離子分析方法 38
3.4.3滲透壓分析儀分析原理 38
3.4.4黏度計分析儀分析原理 39
3.4.5總有機碳(TOC)分析法 39
3.4.6感應耦合電漿(Inductively Coupled Plasma,ICP) 40
3.5 原水水質分析結果 40
第四章 結果與討論 41
4.1薄膜種類 41
4.2不同驅動液比較 43
4.2.1不同驅動液滲透壓比較 43
4.2.2 濃度極化與PRO、FO模式之影響 45
4.2.3不同濃度之驅動液之影響 49
4.2.4不同掃流速度之驅動液之影響 50
4.3TMAH濃縮效率 53
4.4薄膜蒸餾過程 58
第五章 結論與建議 61
5.1 結論 61
5.2 建議 62
參考文獻 63
參考文獻
1.Gadelha, G., et al., Assessment of micellar solutions as draw solutions for forward osmosis. Desalination, 2014. 354: p. 97-106.
2.Lutchmiah, K., et al., Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation. Journal of Membrane Science, 2014. 460: p. 82-90.
3.Zhang, H., et al., Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chemical Engineering Journal, 2015. 259: p. 814-819.
4.Stone, M.L., et al., Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 2013. 312: p. 124-129.
5.McCutcheon, J.R. and M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science, 2006. 284(1–2): p. 237-247.
6.Hau, N.T., et al., Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 2014. 455: p. 305-311.
7.Boo, C., M. Elimelech, and S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013. 444: p. 148-156.
8.Nguyen, N.C., et al., Application of forward osmosis on dewatering of high nutrient sludge. Bioresource Technology, 2013. 132: p. 224-229.
9.DHaese, A., et al., Trace organic solutes in closed-loop forward osmosis applications: Influence of membrane fouling and modeling of solute build-up. Water Research, 2013. 47(14): p. 5232-5244.
10.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006. 278(1–2): p. 114-123.
11.Lutchmiah, K., et al., Forward osmosis for application in wastewater treatment: A review. Water Research, 2014. 58: p. 179-197.
12.Achilli, A. and A.E. Childress, Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation — Review. Desalination, 2010. 261(3): p. 205-211.
13.Jiao, B., A. Cassano, and E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review. Journal of Food Engineering, 2004. 63(3): p. 303-324.
14.Yang, Q., K.Y. Wang, and T.-S. Chung, A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Separation and Purification Technology, 2009. 69(3): p. 269-274.
15.Han, G., et al., Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 2012. 80: p. 219-231.
16.Cho, Y.H., et al., Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis. Journal of Membrane Science, 2013. 445: p. 220-227.
17.Zhao, S., L. Zou, and D. Mulcahy, Effects of membrane orientation on process performance in forward osmosis applications. Journal of Membrane Science, 2011. 382(1–2): p. 308-315.
18.Mi, B. and M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010. 348(1–2): p. 337-345.
19.Achilli, A., T.Y. Cath, and A.E. Childress, Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 2010. 364(1–2): p. 233-241.
20.Alnaizy, R., A. Aidan, and M. Qasim, Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 2013. 1(3): p. 424-430.
21.Luo, H., et al., A review on the recovery methods of draw solutes in forward osmosis. Journal of Water Process Engineering, 2014. 4: p. 212-223.
22.Valladares Linares, R., et al., Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Research, 2016. 88: p. 225-234.
23.Kim, S., Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions. Bioresource Technology, 2014. 165: p. 88-95.
24.Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006. 281(1–2): p. 70-87.
25.Morão, A.I.C., A.M.B. Alves, and M.D. Afonso, Concentration of clavulanic acid broths: Influence of the membrane surface charge density on NF operation. Journal of Membrane Science, 2006. 281(1–2): p. 417-428.
26.Roy, D., et al., Forward osmosis for the concentration and reuse of process saline wastewater. Chemical Engineering Journal, 2016. 287: p. 277-284.
27.Ang, W.L., et al., Hybrid coagulation–NF membrane process for brackish water treatment: Effect of antiscalant on water characteristics and membrane fouling. Desalination, 2016. 393: p. 144-150.
28.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 2005. 174(1): p. 1-11.
29.Petrotos, K.B., P. Quantick, and H. Petropakis, A study of the direct osmotic concentration of tomato juice in tubular membrane – module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998. 150(1): p. 99-110.
30.Petrotos, K.B., P.C. Quantick, and H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance. Journal of Membrane Science, 1999. 160(2): p. 171-177.
31.HTI, M.X.P., 2005 Electronic Source: http://www.hydrationtech.com.
32.Han, G., et al., Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Progress in Polymer Science, 2015. 51: p. 1-27.
33.Qasim, M., et al., Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 2015. 374: p. 47-69.
34.Ong, R.C., et al., Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2015. 473: p. 63-71.
35.Thiruvenkatachari, R., et al., Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Separation and Purification Technology, 2016. 163: p. 181-188.
36.Xie, M. and S.R. Gray, Transport and accumulation of organic matter in forward osmosis-reverse osmosis hybrid system: Mechanism and implications. Separation and Purification Technology, 2016. 167: p. 6-16.
37.Guo, W., H.-H. Ngo, and J. Li, A mini-review on membrane fouling. Bioresource Technology, 2012. 122: p. 27-34.
38.Xie, M., et al., Relating rejection of trace organic contaminants to membrane properties in forward osmosis: Measurements, modelling and implications. Water Research, 2014. 49: p. 265-274.
39.Zubel, I., M. Kramkowska, and K. Rola, Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives. Sensors and Actuators A: Physical, 2012. 178: p. 126-135.
40.Fan, Y., et al., Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Applied Surface Science, 2013. 264: p. 761-766.
41.Sato, K., et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors and Actuators A: Physical, 1999. 73(1–2): p. 131-137.
42.Tabata, O., pH-controlled TMAH etchants for silicon micromachining. Sensors and Actuators A: Physical, 1996. 53(1–3): p. 335-339.
43.Yang, C.-R., et al., Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions. Sensors and Actuators A: Physical, 2005. 119(1): p. 271-281.
44.Oh, S.-Y., et al., Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials, 2009. 168(1): p. 346-351.
45.Hu, T.-H., et al., Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresource Technology, 2012. 113: p. 303-310.
46.Chang, S., K.-Y.A. Lin, and C. Lu, Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide. Separation and Purification Technology, 2014. 133: p. 99-107.
47.Ling, M.M. and T.-S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 2011. 278(1–3): p. 194-202.
48.Wei, J., et al., Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 2011. 372(1–2): p. 292-302.
49.Wang, P., et al., Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination. Journal of Membrane Science, 2015. 494: p. 1-7.
50.Chou, S., et al., Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination, 2010. 261(3): p. 365-372.
51.Alnaizy, R., A. Aidan, and M. Qasim, Draw solute recovery by metathesis precipitation in forward osmosis desalination. Desalination and Water Treatment, 2013. 51(28-30): p. 5516-5525.
52.Liu, P., et al., Water flux behavior of blended solutions of ammonium bicarbonate mixed with eight salts respectively as draw solutions in forward osmosis. Desalination, 2014. 353: p. 39-47.
53.Zhang, S., et al., Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 2014. 52: p. 112-121.
54.Nguyen, N.C., et al., Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Science of The Total Environment, 2016. 557–558: p. 44-50.
55.Yen, S.K., et al., Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis. Journal of Membrane Science, 2010. 364(1–2): p. 242-252.
56.Liu, Q., et al., Integrated forward osmosis-membrane distillation process for human urine treatment. Water Research, 2016. 91: p. 45-54.
57.Yip, N.Y., et al., High performance thin-film composite forward osmosis membrane. Environmental Science and Technology, 2010. 44(10): p. 3812-3818.
58.Wang, Z., et al., Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. Journal of Membrane Science, 2015. 475: p. 184-192.
59.Widjojo, N., et al., A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chemical Engineering Journal, 2013. 220: p. 15-23.
60.Kim, B., S. Lee, and S. Hong, A novel analysis of reverse draw and feed solute fluxes in forward osmosis membrane process. Desalination, 2014. 352: p. 128-135.
61.Zaviska, F., et al., Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimisation. Journal of Membrane Science, 2015. 492: p. 430-438.
62.Holloway, R.W., et al., Mixed draw solutions for improved forward osmosis performance. Journal of Membrane Science, 2015. 491: p. 121-131.
63.Jamil, S., et al., Forward osmosis treatment for volume minimisation of reverse osmosis concentrate from a water reclamation plant and removal of organic micropollutants. Desalination, 2015. 372: p. 32-38.
64.Cho, M., et al., Osmotically driven membrane processes: Exploring the potential of branched polyethyleneimine as draw solute using porous FO membranes with NF separation layers. Journal of Membrane Science, 2016. 511: p. 278-288.
65.Nguyen, N.C., et al., Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment. Science of The Total Environment, 2015. 518–519: p. 586-594.
66.Nguyen, N.C., et al., Innovative sponge-based moving bed–osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment. Water Research, 2016. 91: p. 305-313.
67.Kong, F.-x., et al., Rejection of nine haloacetic acids and coupled reverse draw solute permeation in forward osmosis. Desalination, 2014. 341: p. 1-9.
68.Benavides, S. and W.A. Phillip, Water recovery and solute rejection in forward osmosis modules: Modeling and bench-scale experiments. Journal of Membrane Science, 2016. 505: p. 26-35.
69.Achilli, A., et al., The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 2009. 239(1–3): p. 10-21.
70.Israelachvili, J.N., Intermolecular and Surface Forces. second ed. With Applications to Colloidal and Biological Systems. 2010, burlington,USA: academic press.
71.Xie, M., et al., Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research, 2012. 46(8): p. 2683-2692.
72.Valladares Linares, R., et al., Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research, 2011. 45(20): p. 6737-6744.
73.Xie, M., W.E. Price, and L.D. Nghiem, Rejection of pharmaceutically active compounds by forward osmosis: Role of solution pH and membrane orientation. Separation and Purification Technology, 2012. 93(0): p. 107-114.
74.Wang, W., et al., Effects of pH and temperature on forward osmosis membrane flux using rainwater as the makeup for cooling water dilution. Desalination, 2014. 351: p. 70-76.
75.Duong, H.C., et al., Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, 2015. 374: p. 1-9.
76.Niemira, B.A. and X. Fan, FRUITS AND VEGETABLES | Advances in Processing Technologies to Preserve and Enhance the Safety of Fresh and Fresh-Cut Fruits and Vegetables A2 - Batt, Carl A, in Encyclopedia of Food Microbiology (Second Edition), M.L. Tortorello, Editor. 2014, Academic Press: Oxford. p. 983-991.
77. 王惠芳,IC 顯影劑的回顧與展望,產業評析-ITIS 智網,2007
78. 科學工業園區污水下水道可容納排入之水質標準暨污水下水道使用費價 準修訂計畫期末報告,國立清華大學化學系,2012
79. 陳廷光、倪振鴻、陳重男,生物薄膜與逆滲透程序應用於TFT-LCD製程廢水處理與回收再利用,工業污染防治,第八十九期,第125-141頁,2004。
80. 謝政育,蔡宗晃,黃子璋,蔡庭玉,化學品廢液回收減廢效益提升分析
http://www.asip.org.tw/userfiles/file/2011/Hsinchu/20112013-1.pdf
81. Kelly K.L., M.C. Marley, and K.L. Sperry, In-Situ Chemical Oxidation on MTBE. Proceedings of Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering. 2002, July: p. 21-24
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔