|
1.Boo, C., M. Elimelech, and S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013. 444: p. 148-156. 2.Chung, T.-S., et al., Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 2012. 1(3): p. 246-257. 3.Hau, N.T., et al., Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 2014. 455: p. 305-311. 4.Nguyen, N.C., et al., Application of forward osmosis on dewatering of high nutrient sludge. Bioresour Technol, 2013. 132: p. 224-9. 5.Engelhardt, T.L., Coagulation, flocculation and clarification of drinking water. Drinking water sector, Hach Company, 2010. 6.Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006. 281(1–2): p. 70-87. 7.Loeb, S., Energy production at the Dead Sea by pressure-retarded osmosis: Challenge or chimera? Desalination, 1998. 120(3): p. 247-262. 8.Klaysom, C., et al., Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 2013. 42(16): p. 6959-6989. 9.Liu, Z., et al., A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 2011. 4(7): p. 2582. 10.Bai, H., Z. Liu, and D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Separation and Purification Technology, 2011. 81(3): p. 392-399. 11.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination, 2005. 174(1): p. 1-11. 12.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006. 278(1–2): p. 114-123. 13.Kravath, R.E. and J.A. Davis, Desalination of sea water by direct osmosis. Desalination, 1975. 16(2): p. 151-155. 14.Moody, C.D. and J.O. Kessler, Forward osmosis extractors. Desalination, 1976. 18(3): p. 283-295. 15.Jiao, B., A. Cassano, and E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review. Journal of Food Engineering, 2004. 63(3): p. 303-324. 16.Petrotos, K.B., P. Quantick, and H. Petropakis, A study of the direct osmotic concentration of tomato juice in tubular membrane – module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998. 150(1): p. 99-110. 17.Petrotos, K.B., P.C. Quantick, and H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance. Journal of Membrane Science, 1999. 160(2): p. 171-177. 18.Achilli, A., et al., The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 2009. 239(1–3): p. 10-21. 19.Cornelissen, E.R., et al., Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 2008. 319(1–2): p. 158-168. 20.Qiu, G. and Y.-P. Ting, Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol, 2014. 170: p. 221-229. 21.Zhao, S., L. Zou, and D. Mulcahy, Effects of membrane orientation on process performance in forward osmosis applications. Journal of Membrane Science, 2011. 382(1-2): p. 308-315. 22.Mi, B. and M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010. 348(1-2): p. 337-345. 23.Lee, K.L., R.W. Baker, and H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, 1981. 8(2): p. 141-171. 24.Mehta, G.D. and S. Loeb, Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. Journal of Membrane Science, 1978. 4: p. 261-265. 25.Loeb, S., et al., Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of Membrane Science, 1997. 129(2): p. 243-249. 26.Seppälä, A. and M.J. Lampinen, On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, 2004. 28(4): p. 283-296. 27.Song, L. and M. Elimelech, Theory of concentration polarization in crossflow filtration. Journal of The Chemical Society, Faraday Transactions, 1995. 91(19). 28.Sablani, S.S., et al., Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 2001. 141(3): p. 269-289. 29.Elimelech, M. and S. Bhattacharjee, A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. Journal of Membrane Science, 1998. 145(2): p. 223-241. 30.Frank, B.S., Desalination of sea water, 1972, US Patents. 31.Li, D., et al., Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res, 2013. 47(1): p. 209-15. 32.Ge, Q., et al., Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res, 2012. 46(4): p. 1318-26. 33.Stevenson, F.J., Humus chemistry, J. Wiley&Sons, NY, 1982. 34.Gaffney, J.S., N.A. Marley, and S.B. Clark. Humic and fulvic acids: isolation, structure, and environmental role. Proceedings of a symposium at the 210th American Chemical Societys National Meeting, Chicago, Illinois, USA, August 1995. in Humic and fulvic acids: isolation, structure, and environmental role. Proceedings of a symposium at the 210th American Chemical Societys National Meeting, Chicago, Illinois, USA, August 1995. 1996. American Chemical Society. 35.Hong, S. and M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 1997. 132(2): p. 159-181. 36.Xagoraraki, I., G.W. Harrington, P. Assavasilavasukul, J.H. Standdrige, Removal of Emerging Waterborne Pathogens and Pathogen Indicators by Pilot-Scale Conventional Treatment (PDF). 2004. 96: p. 102-113. 37.Heinzmann, B., Coagulation and flocculation of stormwater from a separate sewer system–a new possibility for enhanced treatment. Water Science and Technology, 1994. 29(12): p. 267-278. 38.翁韻雅, 以高分子凝集劑處理高濁度原水之研究. 成功大學環境工程學系學位論文, 2003: p. 1-102. 39.Packham, R.F., Some studies of the coagulation of dispersed clays with hydrolyzing salts. Journal of Colloid Science, 1965. 20(1): p. 81-92. 40.O’Melia, C.R., Coagulation and flocculation. Physicochemical processes for water quality control, 1972: p. 61-109. 41.Stumm, W., J.J. Morgan, and A. Black, Chemical aspects of coagulation [with discussion]. Journal (American Water Works Association), 1962. 54(8): p. 971-994. 42.Jarvis, P., B. Jefferson, and S. Parsons, Characterising natural organic matter flocs. Water Science and Technology: Water Supply, 2004. 4(4): p. 79-87. 43.Randtke, S.J., Organic contaminant removal by coagulation and related process combinations. Journal (American Water Works Association), 1988: p. 40-56. 44.Yan, Y., H. Li, and M. Myrick, Fluorescence fingerprint of waters: excitation-emission matrix spectroscopy as a tracking tool. Applied Spectroscopy, 2000. 54(10): p. 1539-1542. 45.Haberkamp, J., et al., Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Res, 2007. 41(17): p. 3794-3802. 46.Collins, M.R., G.L. Amy, and C. Steelink, Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment. Environmental science & technology, 1986. 20(10): p. 1028-1032. 47.Kabsch-Korbutowicz, M., Application of ultrafiltration integrated with coagulation for improved NOM removal. Desalination, 2005. 174(1): p. 13-22. 48.Kabsch-Korbutowicz, M., Impact of pre-coagulation on ultrafiltration process performance. Desalination, 2006. 194(1-3): p. 232-238. 49.Bian, R., et al., Removal of humic substances by UF and NF membrane systems. Water Science and Technology, 1999. 40(9): p. 121-129. 50.Huang, H., K. Schwab, and J.G. Jacangelo, Pretreatment for Low Pressure Membranes in Water Treatment - A Review. Environmental Science and Technology. 43: p. 3011-3019. 51.Chang, P.C.S.a.S.D., Correlations Between Trihalomethanes And Total Organic Halides Formed During Water Treatment. American Water Works Association, 1989. 81: p. 61-65. 52.Stump, V.L. and J.T. Novak, Polyelectrolyte Selection for Direct. Journal of AWWA, 1979. No.71: p. 338-342. 53.Li, G.B. and J. Gregory, Flocculation and sedimentation of high-turbidity waters. Water Research, 1991. 25: p. 1137-1143. 54.Mallevialle, J., Bruchet, A. and F. Fiessinger, How Safe Are Organic Polymers in Water Treatment? Journal of AWWA, 1984. 76, No.6: p. 87-93. 55.Letterman, R.D. and R.W. Pero, Contaminants in Polyelectrolytes Used in Water Treatment. Journal of AWWA, 1990: p. 87-97. 56.Aizawa, T., Y. Magara, and M. Musashi, Problems with introducing synthetic polyelectrolyte coagulants into the water purification process. Water supply, 1991. 9(1): p. 27-35. 57.Glasgow, L.A. and J.P. Hsu, An Experimental Study of Floc Strength. A.I.Ch.E.J., 1982. No.28: p. 779-784. 58.James, C.R. and C.R. OMelia, Considering sludge production in the selection of coagulants. Journal of AWWA, 1982. No.74: p. 148-151. 59.LK, S.W., Polyelectrolytes for water and wastewater treatment1981. 60.Zhu, H., et al., Improving removal of turbidity causing materials by using polymers as a filter aid. Water Res, 1996. 30(1): p. 103-114. 61.Yip, N.Y., et al., High performance thin-film composite forward osmosis membrane. Environmental science & technology, 2010. 44(10): p. 3812-3818. 62.Xie, M., et al., Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications. Water Res, 2014. 49: p. 265-274. 63.Guibai, L. and J. Gregory, Flocculation and sedimentation of high-turbidity waters. Water Res, 1991. 25(9): p. 1137-1143. 64.Wei, R., et al., Highly permeable forward osmosis (FO) membranes for high osmotic pressure but viscous draw solutes. Journal of Membrane Science, 2015. 496: p. 132-141. 65.Abdelrasoul, A., H. Doan, and A. Lohi, Fouling in Membrane Filtration and Remediation Methods. 2013. 66.周勤, 肖锦, 朱云, 硫酸铝去除给水中腐植酸机理研究. 工业水处理, 2000. 20(5): p. 18-20.
|