跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳思穎
研究生(外文):Wu Szu Ying
論文名稱:正滲透於傳統淨水處理程序之研究
論文名稱(外文):Application of forward osmosis in traditional drinking water treatment process
指導教授:阮公元陳孝行陳孝行引用關係
指導教授(外文):Nguyen Cong NguyenChen Shiao-Shing
口試委員:徐宏德李奇旺陳孝行
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:聚丙烯醯胺硫酸鋁驅動液正滲透
外文關鍵詞:PolyacrylamideAluminum sulfateDraw solutionForward osmosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:969
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:0
正滲透 (Forward osmosis, FO) 薄膜程序選擇合適驅動溶液 (Draw solution) 是攸關 FO 薄膜實場應用可行性的關鍵要素之一,傳統淨水廠於混凝程序常使用高價數之硫酸鋁作為混凝劑,其有利水中膠體顆粒之去除;另於水體添加雙藥劑如混凝劑與助凝劑 (Polymer) 可有較佳濁度處理成效。因此本研究應用淨水廠於混凝程序的混凝劑 (硫酸鋁)、高分子凝集劑 (聚丙烯醯胺) 作為 FO 薄膜程序之驅動溶液,同時模擬天然水體水質所存在之腐植酸及錳離子作為進料溶液,探討 FO 薄膜程序對於腐植酸及錳離子於不同驅動溶液反應參數之處理效率比較。
一理想驅動液溶質應具備高水通量、低反滲透鹽量之特性,本研究首先探討以硫酸鋁為驅動溶液,針對不同濃度 (0.1-0.5M) 之硫酸鋁試驗比較,結果顯示於 0.5 M 時,可得較高水通量 (8.14 L/m2h),低反滲透鹽量 (2.40 g/m2h)。再者利用硫酸鋁結合高分子凝集劑之試驗,探討不同離子型聚丙烯醯胺 (陽離子/非離子)、不同聚丙烯醯胺濃度 (1 ppm、10 ppm、100 ppm、500 ppm、1000 ppm)之 FO 薄膜試驗。於 0.5 M 硫酸鋁結合 500 ppm 陽離子型聚丙烯醯胺為驅動溶液時,可得較高水通量 (10.24 L/m2h),但反滲透鹽量卻上升至 13.35 g/m2h,其原因為高分子凝集劑為高黏度之聚合物,當驅動液黏度過高,將容易停留於薄膜導致堵塞,並增加反滲透鹽量之數值。
選用不同型式之 FO 薄膜 (TFC / CTA) 進行長時間 FO 薄膜程序試驗,於進料液端分別添加腐植酸 (TOC 值為20 ppm)、以及錳離子 (6 ppm),以相同條件進行 FO 薄膜 (TFC / CTA) 試驗,連續進行 35 小時,TFC 薄膜、CTA 薄膜於腐植酸 (TOC) 處理效率均大於 99% 以上;錳離子處理效率也均高達 99%,由此證明 FO 薄膜程序可作為傳統淨水廠於原水之前處理,以有效減低後續水處裡程序之負荷。
Forward osmosis (FO) has been recently developed as a green technology in drinking water treatment because of low operating cost and high removal efficiency of contaminants. Hence, this is the first study using FO for pretreating raw surface water to enhance the water quality in drinking water treatment plant. In this work, aluminum sulfate (Al2(SO4)3) combined with polymer was directly used as a draw solution and synthetic raw water (e.i humic acid and manganese) was used as feed solution in FO, the diluted draw solution was then used as a coagulant in coagulation process without regeneration requirement of draw solution.
The results showed that the highest water flux was achieved of 8.14 LMH and reverse salt flux was 2.40 GMH when used 0.5 M Al2(SO4)3 as draw solution in this study. Moreover, aluminum sulfate combined with polymers to investigate the effect of different ionic polyacrylamides (cationic/nonionic), and concentrations (1ppm, 10ppm, 100ppm, 500ppm, 1000ppm) FO process performance. The highest water flux was 10.24 LMH and reverse salt flux was 13.35 GMH when 0.5 M Al2(SO4)3 combined with 500ppm cationic polyacrylamide as draw solution.
Furthermore, both TFC and CTA membranes could obtain the high TOC and manganese removals 99% when added humic acid (TOC 20ppm) and manganese (6ppm) in feed solution during 35 h FO operation. The overall FO performance demonstrated that using Al2(SO4)3 as a draw solution to pretreat raw water source in drinking water treatment plant is a good concept to simultaneously achieve a high water quality and low cost.
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 4
第二章 文獻回顧 6
2.1 正滲透 (Forward Osmosis) 的特性與介紹 6
2.1.1 正滲透膜的應用與未來性 9
2.1.2 正滲透膜的特性分類 11
2.1.3 正滲透膜的阻塞現象 13
2.1.4 濃度極化現象 13
2.1.5 正滲透中利用不同驅動液之比較 15
2.2 天然有機物與腐植酸之組成與特性 18
2.3 化學混凝程序 20
2.3.1 混凝機制 21
2.3.2 鋁鹽之混凝 22
2.3.3 混凝去除天然有機物 23
2.3.4 混凝操作條件對薄膜效率之影響 24
2.4 高分子凝集劑 28
2.4.1 高分子凝集劑之概論 28
2.4.2 高分子凝集劑之潛在問題 29
2.4.3 高分子凝集劑在淨水處理廠之應用 32
第三章 實驗方法與設備 36
3.1 實驗內容 36
3.2 實驗設計 37
3.3 實驗藥品、材料與設備 38
3.3.1 實驗藥品 38
3.3.2 實驗材料 38
3.3.3 實驗設備 40
3.4 實驗分析與方法 41
3.4.1 滲透壓分析儀分析原理 41
3.4.2 黏度計分析原理 42
3.4.3 總有機碳 (TOC) 分析原理 43
3.4.4 掃描式電子顯微鏡 (SEM) 分析原理 43
3.4.5 火焰式原子吸收光譜儀 (AA) 分析原理 44
第四章 結果與討論 45
4.1 硫酸鋁 (Al2(SO3)4) 作為驅動液 45
4.1.1 驅動液對於各參數之影響 45
4.2 硫酸鋁結合不同離子型高分子凝集劑之結果 49
4.2.1 結合陽離子型高分子凝集劑之結果 50
4.2.2 結合非離子型高分子凝集劑之結果 53
4.3 操作參數對人工原水之影響 54
4.3.1 不同薄膜在長時間操作後各參數之影響 54
4.3.2 對錳離子之去除率 61
4.3.3 對腐植酸溶液之 TOC值去除率 62
4.3.4 傳統淨水廠結合正滲透程序的可行性 62
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66
1.Boo, C., M. Elimelech, and S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013. 444: p. 148-156.
2.Chung, T.-S., et al., Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 2012. 1(3): p. 246-257.
3.Hau, N.T., et al., Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 2014. 455: p. 305-311.
4.Nguyen, N.C., et al., Application of forward osmosis on dewatering of high nutrient sludge. Bioresour Technol, 2013. 132: p. 224-9.
5.Engelhardt, T.L., Coagulation, flocculation and clarification of drinking water. Drinking water sector, Hach Company, 2010.
6.Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006. 281(1–2): p. 70-87.
7.Loeb, S., Energy production at the Dead Sea by pressure-retarded osmosis: Challenge or chimera? Desalination, 1998. 120(3): p. 247-262.
8.Klaysom, C., et al., Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 2013. 42(16): p. 6959-6989.
9.Liu, Z., et al., A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 2011. 4(7): p. 2582.
10.Bai, H., Z. Liu, and D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Separation and Purification Technology, 2011. 81(3): p. 392-399.
11.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination, 2005. 174(1): p. 1-11.
12.McCutcheon, J.R., R.L. McGinnis, and M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006. 278(1–2): p. 114-123.
13.Kravath, R.E. and J.A. Davis, Desalination of sea water by direct osmosis. Desalination, 1975. 16(2): p. 151-155.
14.Moody, C.D. and J.O. Kessler, Forward osmosis extractors. Desalination, 1976. 18(3): p. 283-295.
15.Jiao, B., A. Cassano, and E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review. Journal of Food Engineering, 2004. 63(3): p. 303-324.
16.Petrotos, K.B., P. Quantick, and H. Petropakis, A study of the direct osmotic concentration of tomato juice in tubular membrane – module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998. 150(1): p. 99-110.
17.Petrotos, K.B., P.C. Quantick, and H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance. Journal of Membrane Science, 1999. 160(2): p. 171-177.
18.Achilli, A., et al., The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 2009. 239(1–3): p. 10-21.
19.Cornelissen, E.R., et al., Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 2008. 319(1–2): p. 158-168.
20.Qiu, G. and Y.-P. Ting, Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol, 2014. 170: p. 221-229.
21.Zhao, S., L. Zou, and D. Mulcahy, Effects of membrane orientation on process performance in forward osmosis applications. Journal of Membrane Science, 2011. 382(1-2): p. 308-315.
22.Mi, B. and M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010. 348(1-2): p. 337-345.
23.Lee, K.L., R.W. Baker, and H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, 1981. 8(2): p. 141-171.
24.Mehta, G.D. and S. Loeb, Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. Journal of Membrane Science, 1978. 4: p. 261-265.
25.Loeb, S., et al., Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of Membrane Science, 1997. 129(2): p. 243-249.
26.Seppälä, A. and M.J. Lampinen, On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, 2004. 28(4): p. 283-296.
27.Song, L. and M. Elimelech, Theory of concentration polarization in crossflow filtration. Journal of The Chemical Society, Faraday Transactions, 1995. 91(19).
28.Sablani, S.S., et al., Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 2001. 141(3): p. 269-289.
29.Elimelech, M. and S. Bhattacharjee, A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. Journal of Membrane Science, 1998. 145(2): p. 223-241.
30.Frank, B.S., Desalination of sea water, 1972, US Patents.
31.Li, D., et al., Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res, 2013. 47(1): p. 209-15.
32.Ge, Q., et al., Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res, 2012. 46(4): p. 1318-26.
33.Stevenson, F.J., Humus chemistry, J. Wiley&Sons, NY, 1982.
34.Gaffney, J.S., N.A. Marley, and S.B. Clark. Humic and fulvic acids: isolation, structure, and environmental role. Proceedings of a symposium at the 210th American Chemical Societys National Meeting, Chicago, Illinois, USA, August 1995. in Humic and fulvic acids: isolation, structure, and environmental role. Proceedings of a symposium at the 210th American Chemical Societys National Meeting, Chicago, Illinois, USA, August 1995. 1996. American Chemical Society.
35.Hong, S. and M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 1997. 132(2): p. 159-181.
36.Xagoraraki, I., G.W. Harrington, P. Assavasilavasukul, J.H. Standdrige, Removal of Emerging Waterborne Pathogens and Pathogen Indicators by Pilot-Scale Conventional Treatment (PDF). 2004. 96: p. 102-113.
37.Heinzmann, B., Coagulation and flocculation of stormwater from a separate sewer system–a new possibility for enhanced treatment. Water Science and Technology, 1994. 29(12): p. 267-278.
38.翁韻雅, 以高分子凝集劑處理高濁度原水之研究. 成功大學環境工程學系學位論文, 2003: p. 1-102.
39.Packham, R.F., Some studies of the coagulation of dispersed clays with hydrolyzing salts. Journal of Colloid Science, 1965. 20(1): p. 81-92.
40.O’Melia, C.R., Coagulation and flocculation. Physicochemical processes for water quality control, 1972: p. 61-109.
41.Stumm, W., J.J. Morgan, and A. Black, Chemical aspects of coagulation [with discussion]. Journal (American Water Works Association), 1962. 54(8): p. 971-994.
42.Jarvis, P., B. Jefferson, and S. Parsons, Characterising natural organic matter flocs. Water Science and Technology: Water Supply, 2004. 4(4): p. 79-87.
43.Randtke, S.J., Organic contaminant removal by coagulation and related process combinations. Journal (American Water Works Association), 1988: p. 40-56.
44.Yan, Y., H. Li, and M. Myrick, Fluorescence fingerprint of waters: excitation-emission matrix spectroscopy as a tracking tool. Applied Spectroscopy, 2000. 54(10): p. 1539-1542.
45.Haberkamp, J., et al., Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Res, 2007. 41(17): p. 3794-3802.
46.Collins, M.R., G.L. Amy, and C. Steelink, Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment. Environmental science & technology, 1986. 20(10): p. 1028-1032.
47.Kabsch-Korbutowicz, M., Application of ultrafiltration integrated with coagulation for improved NOM removal. Desalination, 2005. 174(1): p. 13-22.
48.Kabsch-Korbutowicz, M., Impact of pre-coagulation on ultrafiltration process performance. Desalination, 2006. 194(1-3): p. 232-238.
49.Bian, R., et al., Removal of humic substances by UF and NF membrane systems. Water Science and Technology, 1999. 40(9): p. 121-129.
50.Huang, H., K. Schwab, and J.G. Jacangelo, Pretreatment for Low Pressure Membranes in Water Treatment - A Review. Environmental Science and Technology. 43: p. 3011-3019.
51.Chang, P.C.S.a.S.D., Correlations Between Trihalomethanes And Total Organic Halides Formed During Water Treatment. American Water Works Association, 1989. 81: p. 61-65.
52.Stump, V.L. and J.T. Novak, Polyelectrolyte Selection for Direct. Journal of AWWA, 1979. No.71: p. 338-342.
53.Li, G.B. and J. Gregory, Flocculation and sedimentation of high-turbidity waters. Water Research, 1991. 25: p. 1137-1143.
54.Mallevialle, J., Bruchet, A. and F. Fiessinger, How Safe Are Organic Polymers in Water Treatment? Journal of AWWA, 1984. 76, No.6: p. 87-93.
55.Letterman, R.D. and R.W. Pero, Contaminants in Polyelectrolytes Used in Water Treatment. Journal of AWWA, 1990: p. 87-97.
56.Aizawa, T., Y. Magara, and M. Musashi, Problems with introducing synthetic polyelectrolyte coagulants into the water purification process. Water supply, 1991. 9(1): p. 27-35.
57.Glasgow, L.A. and J.P. Hsu, An Experimental Study of Floc Strength. A.I.Ch.E.J., 1982. No.28: p. 779-784.
58.James, C.R. and C.R. OMelia, Considering sludge production in the selection of coagulants. Journal of AWWA, 1982. No.74: p. 148-151.
59.LK, S.W., Polyelectrolytes for water and wastewater treatment1981.
60.Zhu, H., et al., Improving removal of turbidity causing materials by using polymers as a filter aid. Water Res, 1996. 30(1): p. 103-114.
61.Yip, N.Y., et al., High performance thin-film composite forward osmosis membrane. Environmental science & technology, 2010. 44(10): p. 3812-3818.
62.Xie, M., et al., Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications. Water Res, 2014. 49: p. 265-274.
63.Guibai, L. and J. Gregory, Flocculation and sedimentation of high-turbidity waters. Water Res, 1991. 25(9): p. 1137-1143.
64.Wei, R., et al., Highly permeable forward osmosis (FO) membranes for high osmotic pressure but viscous draw solutes. Journal of Membrane Science, 2015. 496: p. 132-141.
65.Abdelrasoul, A., H. Doan, and A. Lohi, Fouling in Membrane Filtration and Remediation Methods. 2013.
66.周勤, 肖锦, 朱云, 硫酸铝去除给水中腐植酸机理研究. 工业水处理, 2000. 20(5): p. 18-20.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊