(3.238.96.184) 您好!臺灣時間:2021/05/08 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳家任
研究生(外文):Jia-Ren Wu
論文名稱:以超音波噴霧法研製氧化鋅摻雜銅薄膜與其光電元件應用之研究
論文名稱(外文):Research and applications in optoelectronic devices based on Cu doped ZnO thin films prepared by ultrasonic spraying method
指導教授:陳隆建陳隆建引用關係
口試委員:陳隆建劉柏村郭浩中黃建璋吳孟奇
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:氧化鋅、銅氧化鋅、二極體、磁場、超音波噴霧法
外文關鍵詞:ZnOCu doped ZnOdiodesmagnetic fieldultrasonic spraying method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用超音波噴霧法成長摻雜氧化鋅(Zinc Oxide,ZnO)薄膜,即摻銅氧化鋅(ZnO:Cu,CuZnO)薄膜,並利用此類薄膜製作成二極體(diodes)元件,並進一步探討薄膜與光電元件之特性,本研究主要分為三部分重點作為探討。
第一部分,先探討以超音波噴霧法製作之氧化鋅薄膜摻雜銅,並分別採用醋酸銅(Copper acetate)及硝酸銅(Copper nitrate)為製程銅源(copper source),探討不同銅來源材料,對薄膜的光學與結構特性影響。
第二部分,探討不同銅元素濃度對摻雜氧化鋅薄膜光電特性研究與探討,主要以輕摻雜(0~6 %)的方式,並透過多項分析去探討不同摻雜濃度比例的特性,從而觀察結構、電性、光學性質與拉曼光譜的晶格及分子的振動模式等變化。
第三部分,提高銅元素濃度的摻雜比例(10~30 %),透過重摻雜條件,分析氧化鋅於高濃度銅元素摻雜下,造成的光學、電性和結構之差異性,相對於低濃度摻雜,進行一系列的調變摻雜比例之討論。最後,將銅氧化鋅薄膜應用於二極體元件並對其特性進行討論。更進一步,探討受不同外加磁場(magnetic field)影響下,元件啟動電壓與磁場之關係。
ZnO and Cu doped ZnO (CuZnO) thin films were deposited by ultrasonic spraying method. Their properties were discussed in detail and the performance of optoelectronic PN structure diode devices based on them were also evaluated. This study divided into three parts for more clear exploitation.
Firstly, the CuZnO thin films prepared using different Cu sources (copper nitrate and copper acetate) via ultrasonic spray method were fabricated and the effect of different Cu sources on optical and structure properties of the CuZnO thin films were discussed.
Secondly, the optoelectronic properties of CuZnO films prepared using different Cu concentration (0~6 wt%) were investigated. In addition, these thin films were analyzed by X-ray diffraction, Hall, photoluminescence, absorption and Raman measurements. The structure, electrical, and optical properties of the CuZnO films with different doping ratios were observed and Raman spectroscopy showed molecular lattice and vibration mode changes in the CuZnO films.
Thirdly, for comparison study, the CuZnO thin films with Cu heavy doping (10 ~ 30 wt%) were deposited and their electrical and optical properties were analyzed. Moreover, ZnO/CuZnO diode devices on an ITO substrate were fabricated. A current-voltage curves of the device performed with and without applied magnetic field were obtained.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2動機與目的 2
1.3研究方法 3
1.4論文架構 3
第二章 研究理論基礎 4
2.1發光二極體之理論基礎[34] 4
2.1.1基本原理 4
2.1.2發光效率 5
2.2液相化學氣相沉積法 7
2.2.1液相化學氣相沉積法沉積原理 7
2.2.2液相化學氣相沉積法成長機制 8
第三章 氧化鋅 10
3.1文獻回顧 10
3.2氧化鋅的結構與特性 13
第四章 材料及設備與流程 15
4.1實驗材料 15
4.2製程設備 15
4.3實驗流程 16
4.3.1清洗基板 16
4.3.2溶液調配 17
4.3.3薄膜沉積 17
4.4 量測設備 18
4.4.1 X-射線繞射分析量測 18
4.4.2穿透光譜量測分析 18
4.4.3光激發螢光量測 18
4.4.4 拉曼光譜系統量測 19
4.4.5 電磁鐵系統量測 19
4.4.6 霍爾系統量測 19
4.4.7 電子顯微鏡表面分析 20
第五章 研製氧化鋅摻雜銅薄膜與光電元件應用之研究 21
5.1透過不同銅源製作銅氧化鋅薄膜之研究 21
5.1.1 X光繞射分析 21
5.1.2 表面形貌分析 22
5.1.3穿透及吸收光譜分析 22
5.1.4光激發光與拉曼光譜分析 23
5.1.5結果與討論 24
5.2探討銅氧化鋅薄膜的光電特性之研究 25
5.2.1 X光繞射分析 25
5.2.2表面形貌分析 25
5.2.3穿透及吸收光譜分析 25
5.2.4 電特性分析 26
5.2.5光激發光與拉曼光譜分析 26
5.2.6結果與討論 27
5.3銅氧化鋅二極體特性研究 27
5.3.1 電特性分析 27
5.3.2 X光繞射分析 27
5.3.3表面形貌分析 28
5.3.4 穿透及吸收光譜分析 28
5.3.5 光激發光與拉曼光譜分析 28
5.3.6 外加磁場之I-V量測 29
5.3.7 結果與討論 30
第六章 結論 31
參考文獻 56
作者著作目錄 70
[1]K. Sato and H. Katayama-Yoshida, “Ab initio Study on the Magnetism in ZnO-, ZnS-, ZnSe- and ZnTe-Based Diluted Magnetic Semiconductors,” Phys. Status Solidi B, vol. 229, no. 2, 2002, pp. 673-680.
[2]S. Lee, Y. Shon, S.-W. Lee, S.J. Hwang, H.S. Lee, T.W. Kang, D.Y. Kim, “Improved ferromagnetism of (Zn0.93Mn0.07)O through rapid thermal annealing,” Appl. Phys. Lett., vol. 88, no. 21, 2006, pp. 212513.
[3]R. Janisch, P. Gopal, and N. A. Spaldin, “Transition metal-doped TiO2 and ZnO - Present status of the field,” J. Phys.-Condes. Matter, vol. 17, no. 27, 2007, pp. R657-R689.
[4]Priya Gopal, Nicola A. Spaldin, “Magnetic interactions in transition-metal-doped ZnO: An ab initio study,” Phys. Rev. B, vol. 74, no. 9, 2006, pp. 094418.
[5]Y. Zheng, J. C. Boulliard ,D .Demaille, Y. Bernard, J. F. Petroff, “Study of ZnO crystals and Zn1−xMxO (M=Co, Mn) epilayers grown by pulsed laser deposition on ZnO substrate,” J. Cryst. Growth, vol. 274, no. 1-2, 2005, pp. 156-166.
[6]A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, N.V. Pashkova, S.J. Pearton, K. Ip, R.M. Frazier, C.R. Abernathy, D.P. Norton, J.M. Zavada, R.G. Wilson, “Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe,” Mater. Sci. Semicond. Process, vol. 7, no. 1-2, 2004, pp. 77-81.
[7]S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, “Effect of Sn dopant on the properties of ZnO nanowires,” J. Phys. D-Appl. Phys., vol. 37, no. 16, 2004, pp. 2274-2282.
[8]W. Lee, M.C. Jeong, J.M. Myoung, “Optical characteristics of arsenic-doped ZnO nanowires,” Appl. Phys. Lett. vol. 85 no. 25, 2004, pp. 6167-6169.
[9]G. Shen, J.H. Cho, J.K. Yoo, G.-C. Yi, C.J. Lee, “Synthesis and optical properties of S-doped ZnO nanostructures: Nanonails and nanowires,” J. Phys. Chem. B, vol. 109, no. 12, 2005, pp. 5491-5496.
[10]Q.H. Li, Q. Wan, Y.G. Wang, T.H. Wang, “Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires,” Appl. Phys. Lett., vol. 86, no. 26, 2005, 263101, pp. 1-3.
[11]L.Q. Liu, B. Xiang, X.Z. Zhang, Y. Zhang, D.P. Yu, “Synthesis and room temperature ferromagnetism of FeCo-codoped ZnO nanowires,” Appl. Phys. Lett., vol. 88, no. 6, 2006, 063104.
[12]L. Xu, Y. Su, Y. Chen, H. Xiao, L.A. Zhu, Q. Zhou, S. Li, Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures,” J. Phys. Chem. B, vol. 110, no. 13, 2006, pp. 6637-6642.
[13]W.J. Jeong, S.K. Kim, G.C. Park, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell,” Thin Solid Films, vol. 506-507, 2006, pp. 180-183.
[14]X.L. Guo, J.H. Choi, H. Tabata, T. Kawai, “Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode,” Jpn. J. Appl. Phys., vol. 40, no. 3A, 2001, pp. L177-L180.
[15]R.F. Service, “Will UV Lasers Beat the Blues?”, Science, vol. 276, no. 5314, 1997, pp. 895.
[16]Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, “Ultraviolet Detectors Based on Epitaxial ZnO films Grown by MOCVD,” J. Electron. Mater., vol. 29, no. 1, 2000, pp.69-74.
[17]E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, no. 1-2, 2005, pp.28-40.
[18]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, 2003, pp.1624-1630.
[19]Q. Zhang, C.S. Dandeneau, X. Zhou, C. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater., vol. 21, no. 41, 2009, pp. 4087-4108.
[20]Z. Banu Bahşi, A.Y. Oral, “Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films,” Opt. Mater., vol. 29, no. 6, 2007, pp. 672-678.
[21]V.S. Khomchenko, T.G. Kryshtab, A.K. Savin, L.V. Zavyalova, N.N. Roshchina, V.E. Rodionov, O.S. Lytvyn, V.I. Kushnirenko, V.B. Khachatryan, J.A. Andraca-Adame, “Fabrication and properties of ZnO:Cu and ZnO:Ag thin films,” Superlattices Microstruct., vol. 42, no. 1-6, 2007, pp. 94-98.
[22]H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V. A. Dinh and P. H. Dederichs, "Computational nano-materials design for high-TC ferromagnetism in wide-gap magnetic semiconductors," J. Magn. Magn. Mater., vol. 310, no. 2, 2007, pp. 2070-2077.
[23]X.M. Fan, J.S. Lian, Z.X. Guo, H.J. Lu, “Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(1 1 1) substrates,” Appl. Surf. Sci., vol. 239, no. 2, 2005, pp. 176-181.
[24]N.E. Sung, I.J. Lee, A. Thakur, K.H. Chae, H.J. Shin, H.K. Lee, “Properties of Cu-doped ZnO films by RF sputtering method: Thickness dependence,” Mater. Res. Bull., vol. 47, no. 10, 2012, pp. 2891-2894.
[25]A. Mhamdi, R. Mimouni, A. Amlouk, M. Amlouk, S. Belgacem, “Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films,” J. Alloy. Compd., vol. 610, 2014, pp. 250-257.
[26]Y.C. Wang, I.C. Leu, M.H. Hon, “Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition,” Electrochem. Solid State Lett., vol. 5, no. 4, 2002, pp. C53-C55.
[27]E. iewicz, M. Godlewski, T. Krajewski, Ł. Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Godowska, E. Przeździecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N.Huby, G. Tallarida, S. Ferrari, “ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions,” J. Appl. Phys., vol. 105, no. 12, 2009, 122413.
[28]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 36, no. 11, 1997, pp. L1453-L1455.
[29]H.L. Pan, B. Yao, T. Yang, Y. Xu, B.Y. Zhang, W.W. Liu, D.Z. Shen, “Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu,” Appl. Phys. Lett., vol. 97, no. 14, 2010, 142101.
[30]C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, “Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys,” Physical Review Letters, vol. 97, no. 14, 2006,146403.
[31]M. Joseph, H. Tabata, T. Kawai, “p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping,” Jpn. J. Appl. Phys., vol. 38, no. 11, 1999, pp. L1205-L1207
[32]李英瑋,“硫摻雜輔助P 型氧化鋅薄膜與奈米結構研究”,碩士論文,國立清華大學材料科學工程學系,新竹,2011。
[33]洪春芳,”氧化鋅之摻雜及同質接面之研究”,碩士論文,國立中山大學材料科學研究所,高雄,2007
[34]陳隆建,發光二極體之原理與製程 第三版,台北:全華圖書,2010
[35]E. F. Schubert, Light-Emitting Diodes 2nd Edition, New York: Cambridge Univ. Press, 2006, pp.86-87.
[36]I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes”, Appl. Phys. Lett., vol. 63, no. 16, 1993, pp. 2174-2176.
[37]Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces”, IEEE J. Quantum. Electron., vol. 42, no. 12, 2006, pp. 1196-1201.
[38]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, and T. Taguchi, "High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy," phys. stat. sol. (a), vol. 188, no.1, 2001, pp. 121-125.
[39]G. L. Messing, S.C. Zhang and G. V. Jayanthi, "Ceramic powder synthesis by spray pyrolysis," J. Am. Ceram. Soc., vol. 76, no. 11, 1993, pp. 2707-2726.
[40]G. V. Jayanthi, S. C. Zhang and G. L. Messing, "Modeling of Solid Particle Formation During Solution Aerosol Thermolysis," Aerosol Sci. Technol., vol. 19, no.4, 1993, pp. 478-490.
[41]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara and A. Yoshida, "Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient," J. Appl. Phys., vol. 90, no. 11, 2001, pp. 5661-5665.
[42]X.B. Wang, D.M. Li, F. Zeng, F. Pan, “Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering,” J. Phys. D-Appl. Phys., vol. 38, no. 22, 2005, pp. 4104-4108.
[43]H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, M. Gao, “Ferromagnetism in Cu-doped ZnO nanoparticles at room temperature,” J. Mater. Sci.-Mater. Electron., vol. 20, no. 7, 2009, pp. 628-631.
[44]X.L. Li, X.H. Xu, Z.Y. Quan, J.F. Guo, H.S. Wu, G.A. Gehring, “Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO films,” J. Appl. Phys., vol. 105, no. 10, 2009, 103914.
[45]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sens. Actuator B-Chem., vol. 115, no. 1, 2006, pp. 247-251.
[46]J.B. Kim, D. Byun, S.Y. Ie, D.H. Park, W.K. Choi, J.W. Choi, B. Angadi, “Cu-doped ZnO-based p-n hetero-junction light emitting diode,” Semiconductor Science and Technology, vol. 23, no. 9, 2008, 095004.
[47]T. Ghosh, D. Basak, “Highly enhanced ultraviolet photoresponse property in Cu-doped and Cu–Li co-doped ZnO films,” J. Phys. D-Appl. Phys. Vol. 42, no. 14, 2009, 145304.
[48]M. Zhao, X. Wang, L. Ning, J. Jia, X. Li, L. Cao, “Electrospun Cu-doped ZnO nanofibers for H2S sensing,” Sens. Actuator B-Chem., vol. 156, no. 2, 2011, pp. 588-592.
[49]F. Paraguay D., J. Morales, W. Estrada L., E. Andrade, M. Miki-Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis,” Thin Solid Films, vol. 366, no. 1-2, 2000, pp. 16-27.
[50]L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, “Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response,” Sens. Actuator A-Phys., vol. 189, 2013, pp. 399-408.
[51]M. Mukhtar, L. Munisa, R. Saleh, ”Co-Precipitation Synthesis and Characterization of Nanocrystalline Zinc Oxide Particles Doped with Cu2+ Ions,” Materials Sci. Appl., vol.3 no.8, 2012, pp. 543-551.
[52]J.H. Yoon, Y.B. Shim, C.R. Cho, M.S. Won, “Surface characterization of electrochemically fabricated CuO doped ZnO thin film,” Key Engineering Materials, vol. 277-279, no. I, 2005, pp. 972-976.
[53]G. Grosso and G. P. Parravicini, “Solid State Physics”, Cambridge: Cambridge University Press, 2000.
[54]Z.L. Wang, J. Song, ”Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, no. 5771, 2006, pp. 242-246.
[55]E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., vol. 93, no. 3, 1954, pp. 632-633.
[56]B. Lin, Z. Fu and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Appl. Phys. Lett., vol. 79, no. 7, 2001, 943-945.
[57]B. Lin, Z. Fu, Y. Jia and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing condition," J. Electrochem. Soc., vol. 148, no. 3, 2001, pp. G110-G113.
[58]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, no.10, 1996, pp. 7983-7990.
[59]F. Singh, P.K. Kulriya, J.C. Pivin, “Origin of swift heavy ion induced stress in textured ZnO thin films: An in situ X-ray diffraction study,” Solid State Commun., vol. 150, no. (37-38), 2010, pp. 1751–1754.
[60]Y. Caglar, D.D. Oral, M. Caglar, S. Ilican, M.A. Thomas, K. Wu, Z. Sun, J. Cu, “Synthesis and characterization of (CuO)x(ZnO)1−x composite thin films with tunable optical and electrical properties,” Thin Solid Films, vol. 520, no. 21, 2012, pp. 6642–6647.
[61]R. Zamiri, A.F. Lemos, A. Reblo, H.A. Ahangar, J.M.F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int., vol. 40, no. 1, 2014, pp. 523–529.
[62]S. Suwanboon, P. Amornpitoksuk, P. Bangrak, A. Sukolrat, N. Muensit, “The dependence of optical properties on the morphology and defects of nanocrystalline ZnO powders and their antibacterial activity,” J. Ceram. Process. Res., vol. 11, no. 5, 2010, pp. 547–551.
[63]Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., vol. 78, no. 4, 2001, pp. 407–409.
[64]S.C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C.J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chem. Phys. Lett., vol. 363, no.1-2, 2002, pp. 134–138.
[65]R.B.M. Cross, M.M. De Souza, E.M. Sankara Narayanan, “A low temperature combination method for the production of ZnO nanowires,” Nanotechnology, vol. 16, no. 10, 2005, pp. 2188–2192.
[66]T. Mahalingam, K.M. Lee, K.H. Park, S. Lee, Y. Ahn, J.-Y. Park, K.H. Koh, “Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods,” Nanotechnology, vol. 18, no. 3, 2007, 035606.
[67]W.W. Li, W.L. Yu, Y.J. Jiang, C.B. Jing, J.Y. Zhu, M. Zhu, Z.G. Hu, X.D. Tang, J.H. Chu, “Structure, optical, and room-temperature ferromagnetic properties of pure and transition-metal-(Cr, Mn, and Ni)-doped ZnO nanocrystalline films grown by the sol-gel method,” J. Phys. Chem. C, vol. 114, no. 27, 2010, pp. 11951–11957.
[68]C.A. Lin, D.S. Tsai, C.Y. Chen, J.H. He, “Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films,” Nanoscale, vol. 3, no. 3, 2011, pp. 1195–1199.
[69]T. Shinagawa, S. Watase, M. Izaki, “Size-controllable growth of vertical ZnO nanorod arrays by a Pd-catalyzed chemical solution process,” Cryst. Growth Des., vol. 11, no. 12, 2011, pp. 5533–5539.
[70]N.H. Alvi, K. ul Hasan, O. Nur, M. Willander, “The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes,” Nanoscale Res. Lett., vol. 6, no. 1, 2011, pp. 1-7.
[71]T.C. Damen, S.P.S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev., vol. 142, no. 2, 1996, 570–574.
[72]W. H. Weber, R. Merlin (Eds.), “Raman Scattering in Materials Science,” Springer, 2006.
[73]田青禾,”氧化鋅系薄膜之光電特性及其應用在光二極體及氮化鎵系發光二極體之研究”,博士論文,國立台北科技大學,台北,2012
[74]M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, “Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering,” Thin Solid Films, vol. 379, no. 1-2, 2000, pp. 28–36.
[75]V.A. Nikitenko, V.G. Plekhanov, S.V. Mukhin, M.V. Tkachev, “Raman spectra of oxide zinc powders and single crystals,” J. Appl. Spectrosc., vol. 63, no. 2, 1996, pp. 290–292.
[76]A.E. Manouni, F.J. Manjón, M. Mollar, B. Marí, R. Gómez, M.C. López, J.R. Ramos-Barrado, “Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis,” Superlattices Microstruct., vol. 39, no. 1-4, 2006, pp.185–192.
[77]F.J. Manjón, B. Marí, J. Serrano, A.H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys., vol. 97, no. 5, 2005, 053516.
[78]M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, “CuO and Co3O4 nanoparticles: Synthesis, characterizations, and raman spectroscopy,” J. Nanomater. vol. 2013, 2013, 714853.
[79]J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, “Raman spectra of CuO nanocrystals,” J. Raman Spectrosc. vol. 30, no. 5, 1999, pp. 413–415.
[80]B.H. Bairamov, A. Heinrich, G. Irmer, V.V. Toporov, E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi b, vol. 119, no. 1, 1983, pp. 227–234.
[81]R.D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, 1976, pp. 751–767.
[82]K. Keis, L. Vayssieres, H. Rensmo, S.-E. Lindquist, A. Hagfeldt, “Photoelectrochemical properties of Nano- to microstructured ZnO electrodes,” J. Electrochem. Soc., vol. 148, no. 2, 2001, pp. 149–155.
[83]Z. Wu, Q. Xu, X. Wu, L. Zhuge, B. Hong, Q. Chen, “Structural, optical and electronic properties of Cu-doped ZnO films synthesized by RF magnetron sputtering,” ADV MAT RES, vol. 97-101, 2010, pp. 1198-1202.
[84]T.S. Jeong, M.S. Han, C.J. Youn, Y.S. Park, “Raman scattering and photoluminescence of As ion-implanted ZnO single crystal,” J. Appl. Phys., vol. 96, no. 1, 2004, pp. 175–179.
[85]K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, C. Rettori, “Raman scattering studies in dilute magnetic semiconductor Zn1−xCoxO,” Phys. Rev. B, 2006, vol. 73, no. 24, 245213.
[86]P.K. Sharma, R.K. Dutta, A.C. Pandey, “Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods,” J. Magn. Magn. Mater., vol. 321, no. 24, 2009, pp. 4001–4005.
[87]K.A. Alim, V.A. Fonoberov, A.A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett., 2005, vol. 86, no. 5, 053103.
[88]A.K. Pradhan, K. Zhang, G.B. Loutts, U.N. Roy, Y. Cui, A. Burger, “Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures,” J. Phys. Condens. Matter, vol. 16, no. 39, 2004, pp. 7123–7129.
[89]R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, “Temperature dependence of Raman scattering in ZnO,” Phys. Rev. B, vol. 75, no. 16, 2007, 165202.
[90]H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, “Structure and magnetic properties of Zn1−xCoxO single-crystalline nanorods synthesized by a wet chemical method,” Nanotechnology, vol. 17, no. 17, 2006, pp. 4312-4316.
[91]C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, “Photoluminescent properties of copper-doped zinc oxide nanowires,” Nanotechnology, vol. 15, no. 7, 2004, pp. `856–861.
[92]H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias, U. Gösele, F. Heyroth, C. Eisenschmidt, T. Hempel, J. Christen, “On the growth mechanism and optical properties of ZnO multi-layer nanosheets,” Appl. Phys. A, vol. 79, no. 8, 2004, pp.1895–1900.
[93]O. Lupan, T. Pauporté, B. Viana, I.M. Tiginyanu, V.V. Ursaki, R. Cortès, “Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication,” ACS Appl. Mater Interfaces, vol. 2, no. 7, 2010, pp.2083–2090.
[94]X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci., vol. 253, no. 16, 2007, pp. 6905–6909.
[95]Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, and T. Wu, “Bound Magnetic Polarons and p-d Exchange Interaction in Ferromagnetic Insulating Cu-Doped ZnO,” Appl. Phys. Lett., vol. 98, no. 16, 2011, pp. 162503.
[96]R.C. Wang and H.Y. Lin, “Cu Doped ZnO Nanoparticle Sheets,” Mater. Chem. Phys., vol. 125, no.1-2, 2011, pp. 263-266.
[97]A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, and R. Yousefi, “X-ray Analysis of ZnO Nanoparticles by WilliamsonHall and Size-Strain Plot Methods,” Solid State Sci., vol. 13, no. 1, 2011, pp. 251-256.
[98]J. Wu, X. Shen, L. Jiang, K. Wang, and K. Chen, “Solvothermal Synthesis and Characterization of Sandwich-Like Graphene/ZnO Nanocomposites,” Appl. Surf. Sci., vol. 256, no. 9, 2010, pp. 2826-2830.
[99]O. Lupan, V.M. Guérin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-Aligned Arrays of Vertically Oriented ZnO Nanowires Electrodeposited on ITO-Coated Glass and Their Integration in Dye Sensitized Solar Cells,” J. Photochem. Photobiol. A, vol. 211, no. 1, 2010, pp. 65-73.
[100]M. Chen, Y. Yue, and Y. Ju, “Growth of Metal and Metal Oxide Nanowires Driven by the Stress-Induced Migration,” J. Appl. Phys., vol. 111, no. 10, 2012, pp. 104305.
[101]Q.A. Drmosh, S.G. Rao, Z.H. Yamani, and M.A. Gondal, “Crystalline Nanostructured Cu Doped ZnO Thin Films Grown at Room Temperature by Pulsed Laser Deposition Technique and Their Characterization,” Appl. Surf. Sci., 270, 2013, pp. 104-108.
[102]O. Lupan, T. Pauporté, B. Viana, and P. Aschehoug, “Electrodeposition of Cu-Doped ZnO Nanowire Arrays and Heterojunction Formation with p-GaN for Color Tunable Light Emitting Diode Applications,” Electrochim. Acta, vol. 56, no. 28, 2011, pp. 10543-10549.
[103]K. Samanta, P. Bhattacharya, and R.S. Katiyar, “Microstructural and Ferromagnetic Properties of Zn1-xCuxO Thin Films,” J. Appl. Phys., vol. 105, no. 11, 2009, pp. 113929.
[104]N.L. Tarwal, K.V. Gurav, S.H. Mujawar, S.B. Sadale, K.W. Nam, W.R. Bae, A.V. Moholkar, J.H. Kim, P.S. Patil, and J.H. Jang, “Photoluminescence and Photoelectrochemical Properties of the Spray Deposited Copper Doped Zinc Oxide Thin Films,” Ceram. Int., vol. 40, no. 6, 2014, pp. 7669-7677.
[105]B. Marí, M. Sahal, M.A. Mollar, F.M. Cerqueira, and A.P. Samantilleke, “P-Type Behaviour of Electrodeposited ZnO:Cu Films,” J. Solid State Electrochem., vol. 16, no. 6, 2012, pp. 2261-2265.
[106]T. Ghosh, M. Dutta, S. Mridha, and D. Basak, “Effect of Cu Doping in the Structural, Electrical, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films,” J. Electrochem. Soc., vol. 156, no. 4, 2009, pp. 285-289.
[107]J.B. Lee, H.J. Lee, S.H. Seo, and J.S. Park, “Characterization of Undoped and Cu-Doped ZnO Films for Surface Acoustic Wave Applications,” Thin Solid Films, , vol. 398-399, 2001 pp. 641-646.
[108]Z. Ahmed Khan and S. Ghosh, “Robust Room Temperature Ferromagnetism in Cu Doped ZnO Thin Films,” Appl. Phys. Lett., vol. 99, no. 4, 2011, pp. 042503.
[109]A. Aravind, M.K. Jayaraj, M. Kumar, and R. Chandra, “Optical and Magnetic Properties of Copper Doped ZnO Nanorods Prepared by Hydrothermal Method,” J. Mater. Sci., vol. 24, no.1, 2013, pp. 106-112.
[110]S. Muthukumaran and R. Gopalakrishnan, “Structural, FTIR and Photoluminescence Studies of Cu Doped ZnO Nanopowders by Co-precipitation Method,” Opt. Mater., vol. 34, no. 11, 2012, pp. 1946-1953.
[111]C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, and S.J. Chua, “Photoluminescent Properties of Copper-Doped Zinc Oxide Nanowires, Nanotechnology,” vol. 15, no. 7, 2004, pp. 856-861.
[112]X.B. Wang, C. Song, K.W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman Scattering of Cu-Doped ZnO Films Prepared by Magnetron Sputtering,” Appl. Surf. Sci., vol. 253, no. 16, 2007, pp. 6905-6909.
[113]K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, and C. Rettori, “Raman Scattering Studies in Dilute Magnetic Semiconductor Zn1-xCoxO,” Phys. Rev. B, vol. 73, no. 24, 2006, pp. 245213.
[114]J.J. Wu and S.C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods,” J. Phys. Chem. B, vol. 106, no. 37, 2002, pp. 9546-9551.
[115]H.F. Goldstein, D.S. Kim, P.Y. Yu, L.C. Bourne, J.P. Chaminade, and L. Nganga, “Raman Study of CuO Single Crystals,” Phys. Rev. B, vol. 41, no. 10, 1990, pp. 7192-7194.
[116]J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, and X.Q. Xin, “Raman Spectra of CuO Nanocrystals,” J. Raman Spectrosc., vol. 30, no. 5, 1999, pp. 413-415.
[117]J. Yang, L. Fei, H. Liu, Y. Liu, M. Gao, Y. Zhang, and L. Yang, “A Study of Structural, Optical and Magnetic Properties of Zn0.97-xCuxCr0.03O Diluted Magnetic Semiconductors,” J. Alloys Compd., vol. 509, no. 8, 2011, pp. 3672-3676.
[118]Z. Ai, H. Wu, Y. Lin, Z. Zhou, S. Wang, and C. Liu, “Carrier Concentration Effect of Cu-Doped ZnO Films for Room Temperature Ferromagnetism,” Jpn. J. Appl. Phys., vol. 51, no. 10, 2012, pp. 103003.
[119]B.S. Kang and K.P. Chae, “Ab Initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-Codoped ZnO,” J. Magn., vol. 17, no. 3, 2012, pp. 163-167.
[120]F. Wang, W. Lin, L.-Z. Wang, Y.-M. Ge, X.-T. Zhang, H.-R. Lin, W.-W. Huang, J.-Q. Huang, and W. Cao, “Magnetic Properties of the Cu-Doped ZnO: Experiments and Theory,” Acta Phys. Sin., vol. 63, no. 15, 2014, pp. 157502.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔