(3.236.214.19) 您好!臺灣時間:2021/05/09 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俊凱
研究生(外文):Jun-Kai Huang
論文名稱:反式(FAPbI3)1-x(MAPbBr3)x混合鈣鈦礦太陽能電池製備與其特性之研究
論文名稱(外文):Research on inverted mixed (FAPbI3)1-x(MAPbBr3)x perovskite solar cells
指導教授:李金連、陳隆建
指導教授(外文):King-Lien Lee、Lung-Chien Chen
口試委員:陳昇暉朱聖緣
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:甲基胺鉛溴鈣鈦礦、鈣鈦礦太陽能電池、退火溫度
外文關鍵詞:MAPbBr3perovskite solar cellsannealing treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用旋轉塗佈(Spin-coating)方式,製作PEDOT:PSS / mixed (MAPbBr3+FAPbI3) Perovskite / C60 / BCP的異質接面(heterojunction)結構太陽能電池,本篇論文以不同的退火溫度在混合鈣鈦礦中探討薄膜的變異與分析。
  本研究中光伏主動層材料為mixed Perovskite。元件結構為:Glass/ITO/PEDOT:PSS/Mixed Perovskite/C60/BCP/Ag;其中PEDOT:PSS為電洞傳輸層、Mixed perovskite為光伏主動層、C60 / BCP為電子傳輸層。
實驗結果發現混合鈣鈦礦的表面形態,在不同溫度下退火,晶粒尺寸會隨著退火溫度的升高而增加,在135 ℃時晶粒尺寸非常光滑及緻密。對於PL光激發光譜,也會隨著退火溫度而增加,從762.1 nm位移到782.5 nm。最後,本研究探討不同濃度比例及退火溫度對於(FAPbI3)1-x(MAPbBr3)x薄膜的影響,並以 (FAPbI3)0.8(MAPbBr3)0.2,為最佳濃度比例,隨著主動層溫度變化,從75 °C上升至175 °C時,在退火溫度135 °C時表現最突出,短路電流密度(JSC=20.6 mA/cm2),開路電壓(VOC= 0.88 V),填充因子(FF= 65.9 %),功率轉換效率(EFF=12.0 %)。
In this work, we grew the mixed perovskite films with different composition ratios using spin coating method and treating different post
annealing temperatuers .The corresponding structure, optical and electronic behaviors of the mixed perovskite films were discussed.

The device structure was Glass / ITO / PEDOT:PSS / Mixed Perovskite / C60 / BCP /Ag, in this study. Here , the mixed perovskite was active light harvesting layer. PEDOT:PSS was used as a hole transporting layer between ITO and perovskite. C60, and Bathocuproine (BCP) was used as an electron transporting layer.

It was found that the best mole ratio of FAPbI3 to MAPbBr3 in the mixed perovskite was 80:20. And the characteristics of the(FAPbI3)0.8(MAPbBr3)0.2 perovskite films with thermal annealing at temperatures ranging from 75 ℃ to 175 ℃ were analyzed. The different surface properties of the mixed perovskite films were come from different annealing temperatures. The grain size increased with annealing temperature increasing. Smooth dense perovskite film was observed when annealing temperature was over 135 ℃.When annealing temperature increased, the PL peak shifted from 762.1 nm to 782.5 nm. Eventually, the optimum device with 135 ℃ annealing exhibited outstanding performance, with short-circuit current density (JSC= 20.6 mA/cm2), open-circuit voltage (VOC = 0.88 V), fill factor (FF = 65.9 %), and power conversion efficiency (Eff = 12.0 %), respectively.
摘 要------------------------------------------i
ABSTRACT---------------------------------------ii
致謝-------------------------------------------iv
目錄--------------------------------------------v
圖目錄----------------------------------------viii
表目錄-------------------------------------------x

第一章 緒論-------------------------------------1
1.1 前言----------------------------------------1
1.2 研究動機與論文架構---------------------------2

第二章 理論基礎與文獻回顧-------------------------3
2.1 太陽能電池介紹-------------------------------3
2.2 太陽光模擬定義-------------------------------3
2.3 有機太陽能電池工作原理------------------------4
2.3.1 能量及電荷轉移機制-------------------------4
2.3.2 有機太陽能電池運作機制----------------------5
2.3.3 鈣鈦礦有機太陽能電池運作機制----------------6
2.3.4 太陽能電池等效電路-------------------------7
2.3.5 有機太陽能電池重要參數----------------------8
2.4 有機太陽能電池結構--------------------------11
2.4.1 電洞傳輸層PEDOT:PSS材料特性---------------11
2.4.2 主動層MAPbBr3材料特性---------------------11
2.4.3 主動層FAPbI3材料特性----------------------12
2.4.4 主動層Mixed perovskite材料特性------------12
2.4.5 電子傳輸層C60材料特性---------------------12
2.4.6 阻擋層BCP材料特性-------------------------13

第三章 實驗方法與步驟---------------------------14
3.1 實驗架構------------------------------------14
3.2 實驗材料------------------------------------14
3.2.1 ITO玻璃基板-------------------------------14
3.2.2 電洞傳輸層PEDOT:PSS材料-------------------14
3.2.3 主動層Perovskite材料----------------------14
3.2.4 電極Ag材料--------------------------------15
3.2.5 溶劑-------------------------------------15
3.3 實驗設備-----------------------------------15
3.3.1 旋轉塗佈機(Spin Coater)------------------15
3.3.2 熱蒸鍍機與其系統介紹----------------------15
3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM)-----------16
3.3.4 X光繞射儀(X-ray diffractometer)-----------17
3.3.5 穿透光譜量測系統--------------------------17
3.3.6 光電轉換效率量測--------------------------18
3.4 實驗流程------------------------------------19
3.4.1 ITO基板蝕刻與圖樣化-----------------------19
3.4.2 ITO基板清洗------------------------------19
3.4.3 電洞傳輸層PEDOT:PSS溶液調配---------------20
3.4.4 主動層Mixed Perovskite溶液調配------------20
3.4.5 電洞傳輸層PEDOT:PSS成膜------------------20
3.4.6 主動層Mixed Perovskite成膜----------------21
3.4.7 電子傳輸層C60成膜-------------------------21
3.4.8 阻擋層BCP成膜-----------------------------22
3.4.9 陰極金屬電極蒸鍍--------------------------22

第四章 實驗結果與討論---------------------------23
4.1 有機太陽能電池元件J-V分析-------------------23
4.1.1 (FAPbI3)1-x(MAPbBr3)x退火溫度與J-V特性分析------------------------------------------------23
4.1.2 (FAPbI3)1-x(MAPbBr3)x退火溫度對元件之影響--------------------------------------------------23
4.1.3 (FAPbI3)0.8(MAPbBr3)0.2退火溫度對元件之影響 -----------------------------------------------24
4.1.4 正掃和逆掃的最佳退火溫度對元件之影響--------------------------------------------------------25
4.2 (FAPbI3)0.8(MAPbBr3)0.2退火溫度之薄膜分析---------------------------------------------------25
4.2.1 (FAPbI3)0.8(MAPbBr3)0.2退火溫度FESEM分析--------------------------------------------------25
4.2.2 (FAPbI3)0.8(MAPbBr3)0.2退火溫度XRD分析----------------------------------------------------25
4.2.3 (FAPbI3)0.8(MAPbBr3)0.2退火溫度PL分析------------------------------------------------------26
4.2.4 (FAPbI3)0.8(MAPbBr3)0.2退火溫度吸收光譜分析------------------------------------------------26
4.3 不同的鈣鈦礦薄膜吸收光譜和PL激發光譜分析------------------------------------------------------27

第五章 結論與未來展望---------------------------28

參考文獻----------------------------------------46
[1] J.Zhao, A. Wang, and M.A. Green ,”24.5% Efficiency PERT Silicon Solar Cells on SHE MCZ Substrates and Cell Performance on Other SHE Cz and Fz Substrates ,” Solar Energy Materials and Solar Cells, Vol. 66 2001 ,pp. 604-607
[2] S. , S.W. Glunz , J. C. Goldschmidt “Thermal Oxidation Process for High-Efficiency Multicrystalline Silicon Solar Cells”Proceedings of the 19th EuroPean
[3] Kojima, A., Teshima, K., Shirai, Y., et al., J. Am. Chem. Soc. 131, 6050-6051 (2009).
[4] Burschka, J., Pellet, N., Moon, S. J., et al., Nature 499, 316-319 (2013).
[5] Liu, M., Johnston, M. B. and Snaith, H. J., Nature 501, 395-398 (2013).
[6] Science News Science 342, 1438-1439 (2013).
[7] Zhou, H., Chen, Q., Li, G., et al. Science 345, 542-546 (2014).
[8] Green, M.A., Emery, K., Hishikawa, Y., et al., Prog. Photovoltaics 23, 805-812 (2015).
[9] H.J. Snaith, Perovskites: the emergence of a new era for low-cost, highefficiency solar cells, J. Phys. Chem. Lett. 4 (2013) 3623–3630.
[10] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.Il. Seok Science, 348 (2015), pp. 1234–1237.
[11] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui Chem. Mater., 26 (2014), pp. 1485–1491
[12] P.W. Atkins, Kurzlehrbuch Physikalische Chemie, 3. Aufl. (2001), WILEY-VCH.
[13] M.A. Green, Solar Cells Operating Principles, Technology, and System Application, (1982).
[14] 洪勝富、孟心飛、莊啟宏,”有機共軛高分子太陽電池之多層P-I-N 結構設計與製程研究”國立清華大學電子工程研究所,九十六學年度。
[15] 周育正,使用Ag金屬粒子輔助式蝕刻技術製作具有微米孔洞結構砷化鎵混合型光伏元件之研究,碩士論文,國立台北科技大學光電工程系,2010。
[16] Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., Marks, T.J., “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells”, Proceedings of the National Academy of Sciences of the United States of America, (2008), 105 (8), pp. 2783-2787.
[17] Z. Hu, J. Zhang, Z. Hao, Y. Zhao Influence of doped PEDOT:PSS on the performance of polymer solar cells, Sol. Energy Mater. Sol. Cells, 95 (2011), pp. 2763–2767
[18] A. Kanwat, W. Milne, J. Jang Vertical phase separation of PSS in organic photovoltaics with a nickel oxide doped PEDOT:PSS inter layer, Sol. Energy Mater. Sol. Cells, 132 (2015), pp. 623–631
[19] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619
[20] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628
[21] Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897
[22] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Gratzel M 2011 Science 334 629
[23] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
[24] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
[25] C. C. Stoumpos, C. D.Malliakas,
M.G.Kanatzidis, Inorg.Chem. 2013, 52, 9019.
[26] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, J. Phys. Chem. C 2014,
[27] Stranks, S. D., Snaith, H. J. Nat. Nanotechnol. 10, 391-402 (2015).
[28] G. Hodes, Perovskite-Based Solar Cells, Science 342 (2013) 317.
[29] N.-G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, J. Phys. Chem. Lett. 4 (2013) 2423–2429.
[30] H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett. 4 (2013) 3623–3630.
[31] G. Hodes, Perovskite-based solar cells, Science 342 (2013) 317–318.
[32] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316.
[33]M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395.
[34]M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395.
[35]S. Aharon, A. Dymshits, A. Rotem and L. Etgar, J. Mater. Chem. A, 2015, 3, 9171–9178.
[36]PHYSICAL REVIEW B 77, 085311 2008.
[37]CH3NH3PbI 3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells.
[38]X.Wu, L. Wang, F. Luo, B.Ma, C. Zhan, and Y. Qiu, “BaCO3 modification of TiO2 electrodes in quasi-solid-state dyesensitized solar cells: performance improvement and possible mechanism,” Journal of Physical Chemistry C, vol. 111, no. 22, 2007, pp. 8075–8079.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔