跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭毓民
研究生(外文):Yu-Min Peng
論文名稱:以硫化鉛量子點薄膜為飽和吸收體之被動式Q開關摻鐿光纖雷射研究
論文名稱(外文):Study of Passively Q-switched Ytterbium-Doped Fiber Laser Based on PbS Quantum Dot Thin film
指導教授:李穎玟
指導教授(外文):Yin-Wen Lee
口試委員:李穎玟陳建銘林碩泰
口試委員(外文):Yin-Wen LeeChien-Ming ChenShou-Tai Lin
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:放大器光纖雷射量子點鐿離子
外文關鍵詞:AmplifierFiber LaserYtterbiumQuantum Dot
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
近年來,脈衝型光纖雷射逐漸受到矚目,並大量廣泛應用於光通訊、環境檢測、醫療以及精密加工材料處理等等。為了得到高脈衝能量、短脈衝寬度的脈衝雷射,本研究是做出一個輸出波長在1 μm的Q開關光纖雷射,系統是以摻鐿光纖做為增益介質,976 nm的半導體雷射作為幫浦光源,並將硫化鉛量子點(PbS Quantum Dot;PbS QD)薄膜加入至腔體內,產生被動式Q開關機制。PbS QD薄膜是將硫化鉛量子點與膠體調合而成的薄膜,對光有非線性的吸收,因此可作雷射之飽和吸收體使用。最後作出其輸出波長為1039 nm,斜效率21.63%,脈衝能量404 nJ與峰值功率0.159 W的Q開關摻鐿光纖雷射。
目前文獻中,被動式Q開關摻鐿光纖雷射所能達到最高的脈衝能量為18.5 μJ,峰值功率為0.12 kW。為了作出更高功率Q開關摻鐿光纖雷射光源, 我們將原先的雷射源進行放大,使用976 nm的半導體雷射作為放大器的幫浦光源,在種子光源後加上多波長分工器將幫浦光源引導至摻鐿光纖,並以順向幫浦的方式再次將我們的Q開關摻鐿光纖雷射進行放大,經過放大器的增益放大後,種子光源的平均功率達到37.4 mW,脈衝能量達到1.07 μJ,而峰值功率達到0.4 W,為原本的6.5倍。
In recent years, pulsed fiber lasers have attracted substantial researches efforts owing to the extensive applications in communications, environmental sensing, medical treatment, material processing and so on. In order to obtain higher pulse energy, the shorter pulse width of pulsed laser, we will demonstrate a passively Q-switched Yb3+-doped fiber laser with output wavelength at 1μm. This laser system is based on an ytterbium-doped fiber as the gain medium, a 976 nm semiconductor laser as the pump source, and PbS QD thin film as a saturable absorber. The colloid thin film is doped with PbS quantum dot and has saturable light absorption. In this work, we successfully demonstrated the PbS QD thin film based passively Q-switched Yb3+-doped fiber laser with a slope efficiency of 21.63%, pulse energy of 404 nJ, and peak power of 0.159 W at 1039 nm.
As the highest pulse energy and peak power of passively Q-switched Yb3+-doped fiber laser are 18.5 uJ and 0.12 kW, respectively. To build higher power Q-switched ytterbium-doped fiber laser sources, we amplified the above-mentioned laser source. The 976 nm semiconductor pump laser was passed through a wavelength-division multiplexing ( WDM ), and then launched into the Yb3+-doped fiber to provide the laser gain through the forward pump mechanism. After amplifying, the average power of 37.4 mW, pulse energy of 1.07 μJ, and the peak power of 0.4 W were successfully achieved. The amplifier peak power is 6.5 times higher than the seed source.
摘 要 I
ABSTRACT III
誌 謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論與研究動機 1
1.1 研究動機 1
1.2 論文內容及章節分佈介紹 4
第二章 光纖雷射之廣論 5
2.1光纖雷射產生機制 5
2.1-1雷射幫浦光源 7
2.1-2雷射增益介質 9
2.1-3雷射共振腔 10
2.2 Q開關光纖雷射產生機制 12
2.2-1 主動式Q開關使用元件 14
2.2-2 被動式Q開關使用元件 14
第三章 摻鐿光纖之廣論 16
3.1稀土元素與稀土光纖 16
3.2鐿離子之特性介紹 18
第四章 飽和吸收體之廣論 19
第五章 摻鐿光纖雷射之實驗驗證 22
5.1 連續輸出摻鐿光纖雷射 22
5.1-1環型共振腔光纖雷射之實驗架設 22
5.1-2 環型共振腔光纖雷射之實驗結果 24
5.2 被動式Q開關摻鐿光纖雷射 28
5.2-1 被動式Q開關摻鐿光纖雷射之實驗架設 28
5.2-2被動式Q開關摻鐿光纖雷射之實驗結果 30
5.3 被動式Q開關摻鐿光纖雷射放大器 43
5.3-1被動式Q開關摻鐿光纖雷射放大器之實驗架設 43
5.3-2被動式Q開關摻鐿光纖雷射放大器之實驗結果 44
5.3-3被動式Q開關摻鐿光纖雷射放大器之模擬結果 50
第六章 結論與未來展望 53
6.1研究結果統整 53
6.2未來展望 54
參考文獻 56
[1]國家實驗研究院儀器科技研究中心,「高功率雷射性能之比較」,台灣,2007。
(http://www.itrc.narl.org.tw/Publication/Newsletter/no81/p10.php)
[2]財團法人工業技術研究院,「飛秒雷射加工技術」,物理雙月刊37卷第2期,第17至27頁,2015年4月
[3]A. Piper, A. Malinowski, K. Furusawa and D.J. Richardson, “High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser”, ELECTRONICS LETTERS, vol. 40, 2004
[4]L. Zhang, J.T. Fan, J.H. Wang, J.M. Hu, M. Lotya, G.Z. Wang, R.H. Li, L. Zhang, W.J. Blau, J.N. Coleman, J. Wang, and Y. Feng, “Graphene incorporated Q-switching of a polarization-maintaining Yb-doped fiber laser”, Laser Phys. Lett. 9, No. 12, 888–892 (2012)
[5]雷射加工物理基礎。(www.eie.tf.edu.tw/attach/1253353513.ppt)
[6]光纖雷射在航空領域的應用。(http://www.laservalley.org.tw/news_detail.php?id=241)
[7]調Q技術與鎖模技術。(www.eie.tf.edu.tw/attach/1334849091.ppt)
[8]Yin-Wen Lee, Chien-Ming Chen, Chia-Wei Huang, Shih-Ken Chen, and Jhang-Rong Jiang, “Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber”, Optics Express Vol. 24, 2016
[9]Amol Choudhary, Shonali Dhingra, Brian D’Urso, Tina L. Parsonage, Katherine A. Sloyan, Robert W. Eason, and David P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber”, OPTICS LETTERS, vol. 39, 2014
[10]Zhengqian Luo, Member, IEEE, Yizhong Huang, Min Zhong, Yingyue Li, Jianyu Wu, Bin Xu, Huiying Xu, Zhiping Cai, Jian Peng, and Jian Weng, “1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber”, JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, 2014
[11]Jiang Liu, Sida Wu, Quan-Hong Yang, and Pu Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser”, OPTICS LETTERS, vol. 36, 2011
[12]N. Li, J. Xue, J. H. Wong, K. Wu, C. Ouyang, S. Aditya and P. P. Shum, “Passive Q-Switching in 25-km Ultra Long Cavity All-Fiber Ring Laser,” Information, Communications and Signal Processing(ICICS) 8th International Conference, Singapore , pp. 1-3, 2011.
[13]Valentin Gapontsev, Valentin Fornin, Andrei Ount, Igor Samartsev, “100-kW ytterbium fiber laser”, SPIE 3613, Solid State Lasers VIII, 1999
[14]A. Piper, A. Malinowski, K. Furusawa and D.J. Richardson, “High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser”, ELECTRONICS LETTERS, Vol. 40, No. 15, 2004
[15]A. G. Kuznetsov and S. A. Babin, “Q-switched Fiber Laser with Spectral Control for Frequency Doubling”, Laser Physics, Vol. 20, No. 5, pp. 1266–1269, 2010
[16]C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact High-Energy -Switched Cladding-Pumped Fiber Laser with a Tuning Range Over 40 nm”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 11, NO. 8, 1999
[17]L. Zhang, J.T. Fan, J.H. Wang, J.M. Hu, M. Lotya, G.Z. Wang, R.H. Li, L. Zhang, W.J. Blau, J.N. Coleman, J. Wang and Y. Feng, “Graphene incorporated Q-switching of a polarization-maintaining Yb-doped fiber laser”, Laser Phys. Lett. 9, No. 12, pp. 888–892, 2012
[18]Jiang Liu, Sida Wu, Quan-Hong Yang and Pu Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser”, OPTICS LETTERS, Vol. 36, No. 20, 2011
[19]H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Applied Physics Letters, vol. 152.,1971.
[20]丁勝懋,「雷射工程導論」,中央圖書出版社,第96-100頁。
[21]R.E. Teets, F.V. Kowalski, W.T. Hill, N. Carlson and T.W. Hansch, ” Laser Polarization Spectroscopy,” Proc. SPIE , vol. 113,1977, pp. 80-87.
[22]卓哲鴻,「高單位長度增益之矽酸鹽光纖的相關研究」,碩士論文,國立台北科技大學,台北,2013年
[23]光電未來式,「雷射都具有共同的特性」,台灣,2010。
(http://www.ieo.nctu.edu.tw/~ieofuture/102/LZtyp.html)
[24]M. J. F. Digonnet, ” Rare-Earth-Doped Fiber Lasers and Amplifiers,” New York: Madison Dekker,2001, pp. 344.
[25]Y. W. Lee, “Power scaling of Yb3+-doped phosphate fiber lasers and amplifiers, “ Ph. D. Thesis, Stanford University, California, U. S. A., 2008.
[26]Stauffer, P. H. and Hendley J. W, ”Rare earth elements—critical resources for high technology”, U.S. Geological Survey, Fact Sheet 087-02, 2002
[27]陳芙靜,陳仲宜,葉昭永,「材料加工界的明日之星光纖雷射」, 機械工業技術與產業資訊專輯,286期,2007。
[28]Michalis N. Zervas, and Christophe A. Codemard, " High Power Fiber Lasers: A Review, " IEEE Journal of Selected Topics in Quantum Electronics, vol.20, no.5 ,2003.
[29]范信安,「全光纖式被動Q開關脈衝雷射之研究」,碩士論文,中原大學,桃園,2007。
[30]D.C. Hanna, R.M. Percival and I.R. Perry, ” An Ytterbium-doped Monomode Fibre Laser: Broadly Tunable Operation from 1.010 μm to 1.162 μm and Three-level Operation at 974 nm,” Journal of Modern Optics, vol. 37, Issue 4, 1990 , pp. 517-525.
[31]Laser Tutorial, (http://laser.photoniction.com/tutorial/)
[32]P. Rüdiger, ” Encyclopedia of Laser Physics and Technology,” 2008, pp.844.
[33]Jinzhang Wang, Zhengqian Luo, Min Zhou, Chenchun Ye, Hongyan Fu, Zhiping Cai, Huihui Cheng, Huiying Xu, and Wei Qi, “Evanescent-Light Deposition of Graphene Onto Tapered Fibers for Passive Q-Switch and Mode-Locker”, IEEE Photonics Journal, vol. 4, 2012
[34]L. Q. Zhang, Z. Zhuo, J. X. Wang, and Y. Z. Wang, “Passively Q-switched Fiber Laser Based on Graphene Saturable Absorber”, Laser Physics, vol. 22, 2012
[35]I. Moreels, K. Lambert, D. Smeets, D. de Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009)
[36]Thorlab, (https://www.thorlabs.hk)
[37]A.V. Kir’yanov and N.N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity”, Laser Phys. Lett, No. 4, pp. 305-312, 2011
[38]P. Peterka, P. Navr´atil, J. Maria, B. Dussardier, R. Slav´ık, P. Honz´atko and V. Kubeˇcek, “Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers”, Laser Phys. Lett, No. 6, pp. 445–450, 2012
[39]I. A. Lobach, A. Yu. Tkachenko and S. I. Kablukov, “Optimization and control of the sweeping range in an Yb-doped self-sweeping fiber laser”, Laser Phys. Lett, 2016
[40]張俊霖,賴柏延,黎延垠,李穎玟,陳仕宏,黃升龍,「高功率奈秒摻鐿光纖主從式雷射放大器系統」,台灣,2012。
[41]LIEKKITM Application Designer v4.0, http://www.nlight.net/download/lad
[42]曾瀚緯,「纖衣幫浦之摻銩矽酸鹽光纖雷射之相關研究」,碩士論文,國立台北科技大學,台北,2013年
[43]Ashraf F. El-Sherif and Terence A. King, “Evaluation of High Power Q-switched Tm3+ -Doped Silica Fibre Lasers Operating Near 2μm”, SPIE, 2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top