(3.236.214.19) 您好!臺灣時間:2021/05/09 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧宇傑
研究生(外文):YU JIE DENG
論文名稱:使用不同粒徑之銪摻雜次微米矽酸鹽螢光粉層於具表面結構矽太陽能電池特性提升之研究
論文名稱(外文):Photovoltaic Performance Enhancement of Textured Silicon Solar Cell Using Sub-Micron Europium Doped Silicate Phosphors Film
指導教授:何文章何文章引用關係
指導教授(外文):Wen Jeng Ho
口試委員:李三良郭浩中
口試委員(外文):San-Liang LeeHao-Chung Kuo
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:Spin-on 技術抗反射層螢光粉
外文關鍵詞:Spin-on TechniqueAntireflective StructurePhosphors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將探討含銪參雜矽酸鹽螢光粉(Silicate phosphors)層沉積在矽太陽能電池上。藉由螢光粉的波長轉換特性來提升矽太陽能電池的光電特性。因矽太陽能電池在短波段有較高的反射率及表面複合損失,限制了其在短波段的光電轉換效率,藉由螢光粉與二氧化矽的混合層來吸收高能光子並放射出能量較低的光子的效果(Luminescent Down-Shifting, LDS),以提升短波段光譜對矽太陽能電池的貢獻。另外,因螢光粉粒子尺寸會對矽太陽能電池形成光遮蔽及散射效應,在金字塔結構矽太陽能電池上更加明顯。在本論文中,我們利用不同粒徑大小的螢光粉層於矽太陽能電池表面,探討其抗反射、散射及LDS等效應對太陽能電池提升的貢獻。本文結合電池表面粗糙化、TiO2抗反射層、與三種不同粒徑之螢光粉及二氧化矽(SiO2)溶液調製而成的混和層於太陽能電池上,經由光激發螢光(Photoluminescence, PL)、光學顯微鏡(OM)、掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 、反射率(Reflectance)、外部量子效率(External Quantum Efficiency, EQE)、暗電流I-V (Dark I-V)及照光I-V (Photon I-V)等特性量測,以探討不同螢光粉大小對太陽能電池之特性提升率造成的影響。
在本論文中,我們將三種不同粒徑的螢光粉粒子與薄膜沉積於平面與金字塔結構矽太陽能電池表面,並另外製作一組只有沉積單層相同製程條件的二氧化矽薄膜之矽太陽能電池予以比較。在平面太陽能電池部分,僅有SiO2膜的矽太陽能電池,其光電流密度提升率為12.73 % (26.30 mA/cm2 →29.65 mA/cm2)及轉換效率提升率為14.61 % (10.26 % →11.76 %);而含有不同粒徑之螢光粉結合SiO2混合層結構中,得到最好結果為螢光粉是小粒徑時,矽太陽能電池光電流密度提升率為16.84 % (26.54 mA/cm2 →31.01 mA/cm2)及轉換效率提升率為18.14 % (10.64 % →12.57 %)。另外在表面金字塔結構矽太陽能電池中,僅有SiO2膜厚的表面金字塔結構矽太陽能電池,其光電流密度提升率為5.6 % (30.98 mA/cm2 →32.73 mA/cm2)及轉換效率提升率為6.2 % (12.54 % →13.32 %);而含有不同粒徑之螢光粉結合SiO2混合層結構中,得到最好結果為螢光粉是小粒徑時,矽太陽能電池光電流密度提升率為9.2 % (30.62 mA/cm2 →33.43 mA/cm2)及轉換效率提升率為8.9 % (12.64 % →13.77 %)。
In this study, the combination of silicate phosphors and silicon dioxide (SiO2) mixing structure was formed on silicon solar cells. To enhance the photovoltaic performance of silicon solar cells by using phosphors particles was demonstrated. Due to a serious surface recombination and high reflective loss on the surface of silicon at short wavelength region, while limited the conversion efficiency of silicon solar cells. So in this study, Luminescent Down-Shifting (LDS) effect of phosphors particles was applied to the surface of silicon solar cells to improve the conversion efficiency, which can absorb high energy photon and emit low energy photon to enhance the contribution of the short wavelength spectrum of solar cell. Otherwise, the large diameter of phosphor had a larger shading and reflecting area to incident lights. This effects will more obvious on the textured solar cell. In this study, we used different dimensions of Eu-doped phosphors mixed with silicate (SiO2) solution and spun on the both type solar cells. Discussing the enhanced contribution of antireflection, scattering and LDS on solar cell was provided. In addition, the textured surfaced with a TiO2 antireflection layer and three different diameter of phosphors mixed with silicate (SiO2) solution spun on the solar cells were proposed and demonstrated. Finally, the photoluminescence (PL), optical microscope (OM), reflectivity, external quantum efficiency (EQE), dark I-V and photovoltaic I-V characteristics of the SiO2-phosphors mixed layer structure solar cells were measured and compared.
In planar solar cells, the cells with single SiO2 layer antireflective coating solar cell were measured and compared. The solar cell with single SiO2 layer had an improvement of 12.73 % (26.30 mA/cm2 →29.65 mA/cm2) in short-current density (Jsc) and 14.61% (10.26 % →11.76 %) enhancement in conversion efficiency (ƞ);The obtained results indicated that the structure with the small phosphors was the best one, which showed a 16.84 % (26.54 mA/cm2 →31.01 mA/cm2) enhancement in short-current density (Jsc) and 18.14% (10.64 % →12.57 %) enhancement in conversion efficiency (ƞ). On the other hand, in textured solar cells, a 5.6 % (30.98 mA/cm2 →32.73 mA/cm2) enhancement in (Jsc) and 6.2% (12.54 % →13.32 %) enhancement in (ƞ) were achieved. The best result showed that the cell with the textured structure and small phosphors exhibited (Jsc) enhancement of 9.2 % (30.62 mA/cm2 →33.43 mA/cm2) and (ƞ) enhancement of 8.9% (12.64 % →13.77 %).
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 螢光粉之應用與發展 3
1.3 奈米螢光粉發展 4
1.4 螢光粉在太陽能電池之應用與發展 5
1.5 研究動機 7
第二章 太陽能電池與 8
螢光粉-二氧化矽混合層工作原理 8
2.1 太陽能光譜 8
2.2 太陽能電池工作原理 10
2.2.1 光伏效應 10
2.2.2 P-N接面 11
2.2.3 等效電路圖與特性參數介紹 14
2.3 影響效率之因素 18
2.4 表面金字塔抗反射結構 20
2.4.1金字塔抗反射機制 20
2.4.2金字塔結構在太陽能電池上之應用 20
2.5 螢光粉機制與螢光粉-二氧化矽混合層模型 22
2.5.1 螢光粉激發、放射原理 22
2.5.2 螢光粉之組成 23
2.5.3 稀土離子發光特性 24
2.5.4 史托克位移(Stokes shift) 26
2.5.5 螢光粉粒子的光散射機制 27
2.5.6 螢光粉-二氧化矽混合層模型 29
2.6 量子效率 29
2.7 光電流 31
第三章 實驗介紹與流程製作 32
3.1 螢光粉-二氧化矽混合層之太陽能電池結構 32
3.1.1 實驗架構 33
3.2 製程方法 34
3.3 螢光粉-二氧化矽混合層結之表面金字塔結構矽太陽能電池製作 37
3.3.1 單晶矽晶片清洗流程 38
3.3.2表面金字塔結構製作 39
3.3.3 磷擴散製程 40
3.3.4 正面濕式蝕刻隔離 41
3.3.5 背面電極製作 42
3.3.6 正面指狀電極製作 43
3.3.7 螢光粉-二氧化矽混合層製作 45
3.4 量測方法 46
3.4.1 半導體分析儀 : 暗特性量測 46
3.4.2 四點探針量測 : 片電阻量測 47
3.4.3 光學顯微鏡 : 螢光粉粒子遮蔽率量測 47
3.4.4 光學激發光譜儀 : 螢光粉粒子密度量測 48
3.4.5 反射率量測 : 樣品反射率量測 49
3.4.6 積分球反射率量測 50
3.4.7 太陽光模擬器 : 照光特性量測 51
3.4.8 積分球反射率量測外部量子效率 52
3.4.9 場發射槍掃描式電子顯微鏡/能量分散光譜儀/方位影像顯微鏡 53
第四章 實驗結果與討論 54
4.1不同粒徑螢光粉-二氧化矽混合層旋塗於平面式太陽能電池 54
4.1.1 螢光粉粒子分佈 54
4.1.2 光激發光譜分析 59
4.1.3 反射率分析 60
4.1.4 外部量子效率分析 62
4.1.5 暗電流特性分析 63
4.1.6 照光特性分析 65
4.2 不同粒徑螢光粉-二氧化矽混合層旋塗於具表面結構太陽能電池 67
4.2.1 螢光粉粒子分佈 67
4.2.2 反射率分析 69
4.2.3 外部量子效率分析 71
4.2.4 照光特性分析 73
4.3 不同粒徑螢光粉-二氧化矽混合層旋塗於具最佳抗反射層結構之平面式太陽能電池 75
4.3.1 反射率分析 76
4.3.2 外部量子效率分析 77
4.3.3 照光特性分析 79
4.4 不同粒徑螢光粉-二氧化矽混合層旋塗於具最佳抗反射層結構之具表面結構太陽能電池 81
4.4.1 反射率分析 81
4.4.2 外部量子效率分析 83
4.4.3 照光特性分析 85
第五章 結論與未來展望 87
參考文獻 90
[1]J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor, Inorganic chemistry,” Inorganic Chemisty, Vol. 54, pp. 4806–4810, 2015.
[2]Xiang-You Lu, Tse-Chao Hua, and Yan-Ping Wang, “Thermal analysis of high power LED package with heat pipe heat sink,” Microelectronic Journal, Vol. 42, pp. 1257–1262, 2011.
[3]P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., Vol. 64, pp. 417–418, 1997.
[4]李季達, 白光 LED 用奈米螢光粉之前瞻性討論, 光連: 光電產業與技術情報, 第56-59頁,2005。
[5]M. Nkil, V. Čuba, J. Barta, V. Jary, “Highly Luminescent Nanophosphors-New Physic,” Technologies And Applications, Vol. 10, pp. 16–18, 2013.
[6]William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of Junction Solar Cells,” J. Appl. Phys., Vol. 32, pp. 510–519, 1961.
[7]M. A. Green, “Third generatrion photovaltics:Comparative evaluation of advanced solar conversion options,” Photovoltaic Specialists Conference (PVSC), pp. 1330–1334, 2002.
[8]B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Solar Energy Materials & Solar Cells, Vol. 90, pp. 2329–2337, 2006.
[9]M. A. Green, “Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost,” Progress in Photovoltaics, Vol. 9, pp. 123–135, 2001.
[10]A. Shalav, B. S. Richards, M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Solar Energy Materials & Solar Cells, Vol. 91, pp. 829–842, 2007.
[11]Richard C. Neville, “Solar Energy Conversion: THE SOLAR CELL, Second edition,” Elservier, pp. 71–118, 1995.
[12]S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Prentice, Hall, NY, 2001.
[13]林明獻,太陽能電池技術入門,全華圖書股份有限公司,第二版,2008。
[14]E. E. van Dyk and E. L. Meyer “Analysis of the effect of parasitic resistances on the performance of photovoltaic modles,” Renew Energy, Vol. 29, pp. 333-344, 2004.
[15]M. A. Green, “Solar Cells Operating Principles, Technology & System Application,” Prentice Hall, pp. 4-96, 1982.
[16]C. T. Sah, “Reduction of Solar Cell Efficiency by Edge Defects Across the Back Surface Field Junction,” Solid State Electronics, Vol. 25, pp. 851-858, 1982.
[17]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process,” IEEE Transactions on electron devices, Vol. 31, pp. 671-678, 1984.
[18]T. Tideje, E. Yablonovitch and G. Brooks, "Limiting efficiency of silicon solar cells," IEEE Transactions on electron devices, Vol. 31, pp. 711-716, 1984.
[19]P. Campbell and M. A. Green, "The limiting efficiency of the silicon solar cells under concentrated sunlight," IEEE Transactions on electron devices, Vol. 33, pp. 234-239, 1986.
[20]F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys., Vol. 105, pp. 114310-1–114310-7, 2009.
[21]U. Gangopadhyay, K. Kim, S. K. Dhungel, P. K. Basu, J. Yi, “Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use,” Renewable Energy, Vol. 31, pp. 1906-1915, 2006.
[22]A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, Vol. 172, pp. 139-151, 1999.
[23]J. Zhao, A. Wang, M. A. Green, “24% efficient PERL structure silicon solar cells,” Conference Record of IEEE PVSC, pp. 333-335, 1990.
[24]J. Zhao, A. Wang, M. A. Green and S. R. Wenham, “Improvements in silicon solar cell performance,” Conference Record of IEEE PVSC, pp. 399-401, 1991.
[25]劉如熹、林益山、康佳正,白光發光二極體使用螢光粉專利解析,全華科技圖書股份有限公司,台北,第10-11頁,2005。
[26]劉宇桓,發光二極體激發之氧氮化合物螢光粉合成及其特性研究,碩士論文,台 灣大學,台北,民國95。
[27]L. Ozawa, “Cathodoluminescence: theory and applications,” Japan: Kodansha Ltd., 1990.
[28]Hong-Bo Sun, Hong-Bo Sun, Ying Xu, Saulius Juodkazis, Kai Sun, Mitsuru Watanabe, Shigeki Matsuo, Hiroaki Misawa, and Junji Nishii, “Arbitrary-lattice photonic crystals created by multiphoton microfabrication,” Optics Letters, Vol. 26, pp. 325-327, 2001.
[29]Kyeong Youl Jung, Hyun Woo Lee, Yun Chan Kang, Seung Bin Park, and Young Suk Yang, “Luminescent Properties of (Ba,Sr)MgAl10O17:Mn,Eu Green Phosphor Prepared by Spray Pyrolysis under VUV Excitation,” Chem Mater, Vol. 17, pp. 2729-2734, 2005.
[30]G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Applied Optics, Vol. 2, pp. 675-686, 1963.
[31]G. G. Stokes, “On the Change of Refrangibility of Light,” Phil. Trans, Vol. 142, pp. 463-562, 1852.
[32]J. R. Albani, “Structure and Dynamics of Macromolecules:Absorption and Fluorescence Studies,” Elservier, pp. 58, 2005.
[33]J. A. Deluca, “An Introduction to Luminescence in Inorganic Solids,” J. Chem. Educ, Vol. 57, pp. 541–545, 1980.
[34]C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” John Wiley & Sons, New York, Vol. 137, pp. 82–129, 1998.
[35]O. Hasegawa and R. Namazu, “Zn diffusion into GaAs by a two-temperature method,” Appl. Phys. Lett., Vol. 36, pp. 203-205, 1980.
[36]G. Shao, C. Lou, D. Xiao, “Enhancing the efficiency of solar cells by down shifting YAG:Ce 3+ phosphors,” Journal of Luminescence, Vol. 157, pp. 344-348, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔