跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林尹翔
研究生(外文):Yin-Hsiang Lin
論文名稱:半導體飽和吸收鏡之摻銩釔鋁二氧化矽鎖模光纖雷射的研究
論文名稱(外文):Mode locked Thulium-doped nano-engineered yttrium-alumina-silica fiber lasers based on semiconductor saturable absorber mirror.
指導教授:李穎玟
指導教授(外文):Yin-Wen Lee
口試委員:陳建銘黃升龍
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:鎖模光纖雷射摻銩光纖半導體飽和吸收體
外文關鍵詞:mode-locked fiber laserTm-doped fibersemiconductor saturable absorber mirror(SESAM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
近年來,2 um波段已被證實屬於對人眼安全波段,並且水在此波段具有高吸收特性。另一方面,鎖模脈衝雷射具有高重複頻率與高峰值功率的特性,在應用上有利於提升雷射加工品質。因此結合以上特性組成的2 um鎖模雷射,廣泛的應用於精密加工、醫療與環境檢測。
本論文以半導體飽和吸收鏡(SESAM)作為飽和吸收體,製作線性腔體架構之被動式鎖模光纖雷射,此光纖雷射系統之增益介質是使用印度Mukul Chandra Paul博士所領導的中央玻璃與陶瓷研究團隊,以奈米製程的摻銩(Tm3+)釔鋁二氧化矽光纖。我們以自製的1567 nm摻鉺鐿光纖雷射作為幫浦光源,再搭配兩種反射元件組成線性共振腔,藉由改變線性共振腔之腔體反射率,來觀察被動式摻銩鎖模光纖雷射之系統斜效率,並進一步觀察在不同反射率下,鎖模雷射之特性區間與輸出波長的變化。最終可得,於光纖光柵式與光纖迴路式的架構下,分別觀測到1980 nm、1952 nm的鎖模脈衝雷射波長。在1980 nm量測到最高的斜效率18.6%,最大輸出平均功率為24mW、脈衝能量可達到2.2 nJ。
Because of the eye-safe properties and the strong water absorption, 2 um mode-lucked fiber laser sources are of big interesting in application of medicine, environmental sensing and materials processing. In this paper, We report on the development of mode-locked fiber lasers utilizing a Tm3+-doped nano-engineered yttrium–alumina(YA) silica glass fiber and a semiconductor saturable absorber mirror(SESAM). The gain fiber, produced by Dr. M. C. Paul’s group in India, presents several benefits, especially the high efficiency and low loss. The pump source is a 1567-nm lab-made double-clad Er3+ doped fiber laser. In this work, we study the mode-locked laser operation, laser slope efficiency, and output spectra under different reflectivities. Two type of cavity reflector are used. One in the fiber Bragg grating and the other is fiber loop mirror. We successfully demonstrate the potential of the novel Tm-doped yttrium–alumina–silica fiber to produce a self-starting passively mode-locked fiber laser. The highest slope efficiency of 18.6% is obtained in the laser with R=20% FBG. The maximum average output power of 24 mW in the single pulse regime, with the corresponding pulse energy of 2.2 nJ, is successfully achieved.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 論文內容與章節概要 3
第二章 光纖雷射之廣論 4
2.1 雷射機制 4
2.2 光纖雷射架構 7
2.2.1 幫浦光源(pump source): 8
2.2.2 增益介質(gain medium): 9
2.2.3 共振腔(laser resonator) 11
第三章 摻銩光纖之廣論 13
3.1 摻銩二氧化矽光纖之特性 13
3.1.1 幫浦光源-793 nm & 1560 nm 14
3.2摻銩釔鋁二氧化矽光纖製造過程 15
3.3摻銩釔鋁二氧化矽光纖雷射表現 18
第四章 鎖模光纖雷射 20
4.1 鎖模原理 20
4.2 鎖模光纖雷射之機制 22
4.3 被動式鎖模光纖雷射之機制 22
4.4 半導體飽和吸收體 24
4.4.1飽和吸收體之物理機制 26
第五章 被動式鎖模光纖雷射之實驗結果 27
5.1 光纖光柵式之被動式鎖模雷射 29
5.2 光纖迴路反射鏡之被動式鎖模雷射 37
5.3 元件損耗模擬分析 47
5.4 光纖光柵式之初始特性區間 49
5.5 高摻雜銩離子光纖 51
第六章 結論與未來展望 53
6.1 實驗結果統整 53
6.2 未來與展望 55
參考文獻 57
Ch-1
[1]D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser.” Electron. Lett. 24(19), 1222-1223 (1988).
[2]D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre l9aser.” Opt. Communications. 75(3,4), 283-286 (1990).
[3]W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+doped fibre lasers.” Electron. Lett. 26(11), 746-747 (1990).
[4]D. Theisen-Kunde, V. Ott, R. Brinkmann, R. Keller, “Hemostasis of Dissected
Vessels Using a cw 2lm-Laser-Scalpel.” European Conference on Biomedical Optics. (2005).
[5]D. Theisen, V. Ott, H.W. Bernd, V. Danicke, R. Keller, R. Brinkmann, “Cw high
power IR-laser at 2lm for minimally invasive surgery.” European Conference
on Biomedical Optics. (2003).
[6]K. D. Polder, S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: a pilot study.” Dermatol. Surg. 199-206 (2012).
[7]E. M. “Dianov, Fibre optics: forty years laser.” Quantum Electron. 40(1), 1-6 (2010).
[8]N. M. Fried, K. Murray, “High-Power Thulium Fiber Laser Ablation of Urinary Tissues at 1.94 um.” Journal of Endourology. 19(1), 25-31 (2005).
[9]B. J. Orr, “Infrared LIDAR Applications in Atmospheric Monitoring.” John Wiley & Sons. 1-26 (2006).
[10]P. S. Monks, K. A. Willis, “Breath analysis,” Educ. Chem. 110-118 (2010).
[11]J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical Chemistry.” Ann. Rev. Phys. Chem. 49 ,203-232 (1998).
[12]P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser.” Photonics technology letters. 28(14), 1525-1528 (2016).
[13]W. Zhou and D. Shen, “Above 100 nJ solitons from a passively mode-locked thulium-doped fiber oscillator.” Laser Phys Lett. 12, 1-5 (2015).
[14]G. Sobon, J. Sotor,. I. Pasternak, A. Krajewska, W. Strupinski and K. M. Abramsk, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser.” Optics Express. 23(7), 9339-9346 (2015).
[15]Z. Kang, Y. Xu, Z. X. Jia, G. S. Qin and W. P. Qin, “0.8 nm single wall carbon nanotubes for wideband ultrafast pulse generation.” Laser Phys. 26, 1-5 (2016).
Ch-2
[16]程雋,近代物理學,ISBN:9789862970263
[17]物理園,http://www.hk-phy.org/main.html
[18]卓哲鴻,高單位長度增益之矽酸鹽光纖的相關研究,碩士論文,國立台北科技大學,台北,2013年
[19]Q. Wang, J. Geng, Z. Jiang, T. Luo and S. Jiang, “Mode-Locked Tm–Ho-Codoped Fiber Laser at 2.06 m.” IEEE Photonics Technology Letters. 23(11), 682-684 (2011).
[20]Y. W. Lee, “Power scaling of Yb3+-doped phosphate fiber lasers and amplifiers.” Ph. D. Thesis, Stanford University, California, U. S. A. (2008).
[21]雷射知識網,http://www.lasertech.tw/
[22]W. Korchner, “Solid State Laser Engineering.” Springer, New York, pp.120.(2006)
Ch-3
[23] N. M. Fried, G. A. Lagoda, N. J. Scott, L.-M. Su, and A. L. Burnett, “Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable wavelength thulium fiber laser.” Journal of endourology. 22(3), 409-413 (2008).
[24]R. L. Blackmon, P. B. Irby, and N. M. Fried, “Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.” J. Biomed. Opt., 17(2) 1-6 ( 2012).
[25]M. C. Paul, A. Dhar, S. Das, A. A. Latiff, M. T. Ahmad, S. W. Harun, “Development of Nanoengineered Thulium-Doped Fiber Laser With Low Threshold Pump Power and Tunable Operating Wavelength.” IEEE Photonics Journal, 7(1) 7100408 (2015).
[26]R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4) 562-567 (2010).
[27]Brian J. Orr, “Infrared LIDAR Applications in Atmospheric Monitoring.” John Wiley & Sons. 1-26 (2006).
[28]X. Fan et al., “A 2 m continuous wave and passively Q-switched fiber laser in thulium-doped germanate glass fibers,” Laser Phys. 24, 1-5 (2014).
[29]Z. X. Jia et al., “Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers,” J. Appl. Phys. 115(063106), 1-5 (2014).
[30]D.A. Simpson, G.W. Baxter, S.F. Collins, W.E.K. Gibbs, W. Blanc , B. Dussardier , G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber.” Journal of Non-Crystalline Solids, 325, 136-141 (2006).
[31]D. Jackson and A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers.” Journal of Light Wave Technology, 17(5), 948-956 (1999).
[32]S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μm Tm3+-doped silica fiber lasers.” Optics Communications, 230, 197-203 (2004).
[33]A. Sennaroglu, A. Kurt and G. Ozen, “Effect of cross relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2–CdCl2 glass.” Journal of Physics Condensed Matter, 16, 2471-2478 (2004).
[34]Thorlabs- https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_ID=4988
[54]蔡柏賢,高功率摻鈥光纖雷射之幫浦光源的相關研究,碩士論文,國立台北科技大學,台北,2016年
Ch-4
[35]W. Korchner, “Solid State Laser Engineering.” Springer, New York, pp.534.(2006)
[36]W. Korchner, “Solid State Laser Engineering.” Springer, New York, pp.551.(2006)
[37]C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn and C. Kieleck, “Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power.” Optics Letters, 40(7), 1461-1467 (2015).
[38]K. Yin, B. Zhang, W. Yang, H. Chen, S. Chen and J. Hou, “Flexible picosecond thulium-doped fiber laser using the active mode-locking technique.” Optics Letters, 39(14), 4259-4262 (2014).
[39]廖誼灃,具有平凹共振腔的半導體飽和吸收鏡被動鎖模摻釹釩酸釔雷射之研究,碩士論文,東海大學,台中,2011年
[40]康峻維,以鎖模光纖雷射在光纖上同時傳遞微波和光波頻率標準之研究,碩士論文,國立交通大學,新竹,2007年
[41]鍾承知,飛秒級偏振加波鎖模摻鉺光纖雷射之研究,碩士論文,國立交通大學,新竹,2002年
[42]F. X. K¨artner, J. A. d. Au and U. Keller, “Mode-Locking with Slow and Fast Saturable Absorbers—What’s the Difference.” IEEE Journal of Selected Topics in Quantum Electronics, 4(2) 159-167 (1998).
[43]RP photonic, https://www.rp-photonics.com/passive_mode_locking.html
[44]BATOP optoelectronics, http://www.batop.de/information/SAM_infos.html
[45]黃碧鈴、葉昭永、鄭木海,以石墨婦飽和吸收體產生穩定超短脈衝光纖雷射之研究,科儀新知,第三十四卷第一期,第11至20頁,2012年
[46]林泳詳、林恭如,以石墨奈米粒子為飽和吸收體之被動鎖模慘金耳光纖雷射,科儀新知,第三十四卷第一期,第4至10頁,2012年
[47]RP photonic, https://www.rpphotonics.com/semiconductor_saturable_absorber_mirrors.html
Ch-5
[48]Q. Wang, J. Geng, T. Luo and S. Jiang, “Mode-locked 2 m laser with highly thulium-doped silicate fiber.” Optics Letters, 34(23), 3616-3618 (2009).
[49]D. B. Mortimore, “Fiber Loop Reflectors,” Journal of lightwave technology, 6(7), 1217-1224 (1988).
[50]黃幸文,光纖感測光源研製及其重要感測參數之量測,碩士論文,國立台灣科技大學,台北,2013年
[51]LIEKKITM Application Designer v4.0. Available online: http://www.nlight.net/download/lad (accessed on 28 November 2013).
[52]Y. W. Lee, Y. H. Lin, H. Y. Ling, and S. Jiang, “Heavily Tm3+-doped silicate fiber with high gain per unit length.” Optical Materials Express, 5(3), 549-557 (2015).
CH-6
[53]Q. Wang, J. Geng, T. Luo and S. Jiang, “2μm Mode-locked fiber lasers.” SPIE, 8237, 1-8 (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top