(35.175.212.130) 您好!臺灣時間:2021/05/17 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王呈豪
研究生(外文):WangChenghao
論文名稱:混合光纖到家與微波光纖通訊系統使用極化多工技術之研究
論文名稱(外文):Hybrid FTTH and RoF Communication System Using Polarization Division Multiplexing
指導教授:彭朋群
口試委員:彭朋群,林家弘,馮開明
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:極化多工整合有線及無線服務微波光纖通訊光纖到家
外文關鍵詞:polarization division multiplexinghybrid signalradio over fiberfiber to the home
相關次數:
  • 被引用被引用:1
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出混合光纖到家與微波光纖通訊系統使用極化多工技術,在這個傳輸系統中我們不需要光濾波器來消除特定的波長,傳輸微波訊號的波長與中心波長可以動態調整並且不影響整體混合傳輸的品質。本架構利用單一雷射光源當作用戶的光載波,同時經由一條標準單模光纖傳送有線訊號及無線訊號,達到混合傳輸的目的。實驗結果證明,經過25公里的光纖傳輸後,用戶的有線訊號及無線訊號品質皆可達到要求規範。此外,該系統經濟與靈活之特性可滿足未來光纖通訊網路的需求。
In this study, we proposed hybrid fiber to the home (FTTH) and radio over fiber (RoF) system using polarization division multiplexing. We didn’t use optical filter to eliminate any specific optical wavelength from the hybrid transport system. The employed optical wavelength and central carrier frequency of the transmitted radio frequency signal can be dynamically adjusted without alerting the transmission performance of the proposed hybrid transport system. This scheme can transmit both wireline and wireless signals using one standard single mode fiber (SSMF), which serves two applications simultaneously. Experimental results proved that the quality of wireline and wireless signals can satisfy user’s requirements after transmitting over 25 km SSMF. Moreover, the proposed system is sufficient to meet the standards of future communication networks.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1.1 光纖通訊 1
1.2 光纖到X 2
1.3 光纖微波系統 3
1.4 研究動機與目的 9
1.5 論文結構 10
第二章 實驗原理 11
2.1 電光效應與電光材料 11
2.2 強度調變器 12
2.3 光放大器 19
2.3.1 反射式半導體光放大器 19
2.3.2 摻鉺光纖放大器 21
2.4 混頻器 22
2.5 四倍頻微波(無線)與基頻(有線)產生原理 23
第三章 混合有線及無線通訊系統 27
3.1 微波訊號產生與混合傳輸模組 27
3.1.1 無線微波訊號產生 27
3.1.2 全光升頻 28
3.1.3 同時產生有線與無線訊號 33
3.2 實驗簡介 36
3.3 實驗架構 39
3.4 實驗結果 48
3.4.1 無線微波訊號 48
3.4.2 有線基頻訊號 49
第四章 結論 50
參考文獻 52
[1]G. Keiser, Optical fiber communications, Fourth Edition, New York: McGraw-Hill, pp. 1-28, 2008.
[2]S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightw. Technol., vol. 22, no. 11, pp. 2582-2591, Nov. 2004.
[3]G. Keiser, FTTX concepts and applications, New Jersey: John Wiley & Sons, pp. 13-15, 2006.
[4]J. Wells, Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications, Norwood, MA: Bartech House, 2010.
[5]J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, and Z. Dong, "Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems," J. Lightw. Technol., vol. 28, no. 16, pp. 2376-2397, Aug. 2010.
[6]C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G. K. Chang, "A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies," J. Lightw. Technol., vol. 31, no. 17, pp. 2869–2875, Sep. 2013.
[7]C. Liu, J. Wang, L. Cheng, M. Zhu and G. K. Chang, "Key microwave-photonics technologies for next-generation cloud-based radio access networks," J. Lightw. Technol., vol. 32, no. 20, pp. 3452-3460, Oct. 2014.
[8]J. Wells, "Faster than fiber: the future of multi-Gb/s wireless," IEEE Microw. Mag. vol. 10, no. 3, pp. 104-112, May 2009. 
[9]T. S. Rappaport, J. N. Murdock, and F. Gutierrez, "State of the art in 60 GHz integrated circuits & systems for wireless communications, Proc. IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
[10]T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work!, IEEE Access, vol. 1, pp. 335-349, May 2013.
[11]S. Rangan, T. Rappaport and E. Erkip, Millimeter-wave cellular wireless networks: Potentials and challenges, Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.
[12]E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulator for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 1, pp. 69-82, Jan./Feb. 2000.
[13]T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 1, pp. 79-91, Jan./Feb. 2007.
[14]C. T. Lin, P. T. Shih, J. Chen, W. J. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, "Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering," IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 2084-2092, Aug. 2009.
[15]M. J. O’mahony, "Semiconductor laser optical amplifiers for use in future fiber systems," J. Lightw. Technol., vol. 6, no. 4, pp. 531-544, Apr. 1988.
[16]D. R. Zimmerman and L. H. Spiekman, "Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications," J. Lightw. Technol., vol. 22, no. 1, pp. 63-67, Jan. 2004.
[17]G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, "High gain (30 dB) and high saturation power (11 dBm) RSOA devices as colorless ONU sources in long reach hybrid WDM/TDM-PON architecture," IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 191-193, Feb. 2010.
[18]Z. A. Qazwini, and H. Kim, "Symmetric 10-Gb/s WDM-PON Using Directly Modulated Lasers for Downlink and RSOAs for Uplink," J. Lightw. Technol., vol. 30, no. 12, pp. 1891-1899, Jun. 2012.
[19]J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057-1059, Jul. 2007.
[20]M. Zhu, L. Zhang, J. Wang, L. Chen, C. Liu, and G. K. Chang, "Radio-over-fiber access architecture for integrated broadband wireless services," J. Lightw. Technol., vol. 31, no. 23, pp. 3614-3620, Dec. 2013.
[21]J. Yao, "Microwave Photonics," J. Lightw. Technol., vol. 27, no. 3, pp. 314-335, Feb. 2009.
[22]P. C. Peng, H. Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry–Pérot laser diode," IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 661-663, May 2003.
[23]P. C. Peng, H. Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 575-577, Feb. 2004.
[24]Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, "Employing external injection locked Fabry–Perot laser scheme for mm wave generation," Laser Phys., vol. 21, no. 4, pp. 718-721, Apr. 2011.
[25]G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, "Radiofrequency signal-generation system with over seven octaves of continuous tuning," Nature Photon. vol. 7, no. 2, pp. 118-122, Feb. 2013.
[26]M. F. Huang , J. Yu , Z. Jia, and G. K. Chang, "Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems," J. Lightw. Technol., vol. 26, no. 15, pp. 2653-2662, Aug. 2008.
[27]L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, "A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM," Opt. Express, vol. 19, no. 6, pp. 5196-5201, Mar. 2011.
[28]Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, "Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique," J. Lightw. Technol., vol. 29, no.8, pp. 1105–1111, Apr. 2011.
[29]C. Liu, H. C. Chien, S. H. Fan, J. Yu, and G. K. Chang, "Enhanced vector signal transmission over double-sideband carrier suppressed optical millimeter-waves through a small LO feedthrough," IEEE Photon. Technol. Lett., vol. 24, no. 3, pp. 173-175, Feb. 2012.
[30]T. Wang, H. Chen, M. Chen, J. Zhang, and S. Xie, "High-spectral-purity millimeter-wave signal optical generation," J. Lightw. Technol., vol. 27, no. 12, pp. 2044-2051, Jun. 2009.
[31]H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," IEEE J. Lightw. Technol., vol. 26, no. 15, pp. 2706-2711, Aug. 2008.
[32]J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Opt. Fiber Technol., vol. 15, no. 3, pp. 290-295, Jan. 2009.
[33]Y. T. Hsueh, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, "Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement," J. Opt. Commun. Netw., vol. 3, no. 3, pp. 254-258, Mar. 2011.
[34]P. C. Peng, L. H. Yen, C. H. Chang, Y. C. Chen, and J. J. Jhang, "Hybrid wireline and wireless transport system based on polarization modulator," IEEE Photon. Technol. Lett., vol. 25, no. 11, pp.1069-1072, Jun. 2013.
[35]P. C. Peng, H. Y. Wang, C. H. Chang, H. L. Hu, W. Y. Yang, and F. K. Wu, "DSBCS modulation scheme for hybrid wireless and cable television system," Opt. Express, vol. 22, no. 1, pp. 1135-1142, Jan. 2014.
[36]C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, "Hybrid OFDM and Radio-over-Fiber Transport System based on a Polarization Modulator," IEEE Photon. J., vol. 7, no. 5, pp. 7903708, Oct. 2015.
[37]K. Ikeda, T. Kuri, and K. Kitayama, "Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave- and 60-GHz-band signals on a single wavelength," J. Lightw. Technol., vol. 21, no. 12, pp. 3194-3202, Dec. 2003.
[38]J. J. V. Olmos, T. Kuri, and K. Kitayama, "Reconfigurable radio-over-fiber networks multiple-access functionality directly over the optical layer," J. Lightw. Technol., vol. 58, no. 11, pp. 3001–3010, Nov. 2010.
[39]H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., OTuB7, 2009.
[40]Y. T. Hsueh, M. F. Huang, S. H. Fan, and G. K. Chang, "A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON," IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1085-1087, Aug. 2011.
[41]S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supaat, and H. Ahmad, "Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul," Sci. Rep., vol. 6, no. 19891, Jan. 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top