跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳仕肯
研究生(外文):Shih-Ken Chen
論文名稱:鎖模摻鉺釔鋯鋁矽酸鹽光纖雷射與放大器之研究
論文名稱(外文):Study of mode-locked Er3+ - doped Yttria Stabilized Zirconia-Alumino silicate fiber laser and amplifier
指導教授:李穎玟
指導教授(外文):Yin-Wen Lee
口試委員:黃升龍陳建銘李穎玟
口試委員(外文):Yin-Wen Lee
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:放大器飽和吸收體硫化鉛量子點非線性偏振旋轉鎖模矽酸鹽光纖鉺離子
外文關鍵詞:AmplifierSaturable absorberPbS quantum dotsNonlinear polarization rotationMode lockingSilicate fiberErbium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在光纖雷射發展中,超快脈衝光纖雷射倍受矚目,其應用廣泛的使用在醫療美容、精密微細加工、通訊及科學研究等。在眾多波長的光纖雷射中,1.55μm波段雷射在超快脈衝的發展上極為快速,因為此波段對於人眼較為安全以及相對於1μm與2μm的雷射波段較易產生鎖模現象。

此研究論文中所使用的增益光纖,是由印度中央玻璃與陶瓷研究團隊的Mukul Chandra Paul博士所領導製作,實驗可分為光孤子鎖模光纖雷射、鎖模光纖雷射放大器以及以硫化鉛量子點( PbS QDs )薄膜作為飽和吸收體的鎖模光纖雷射三大部分,其中鎖模光纖雷射放大器是由環形共振腔(光孤子鎖模光纖雷射作為種子光源)以及線性共振腔(放大器)兩個架構所組成,並用纖心幫浦( core-pumped )的機制組成鎖模放大器架構,而經過放大器的增益放大後,可放大原本光孤子鎖模光纖雷射的脈衝能量以及峰值功率數倍。在硫化鉛量子點鎖模光纖雷射部分,是將最新的材料硫化鉛量子點用於飽和吸收體之作用,產生如同石墨烯被動式鎖模光纖雷射之特性。
In recent years, mode-locked fiber lasers have attracted substantial research efforts owing to the extensive applications in medical treatment, micro-material processing, communications, scientific research and so on. Among different excitation wavelengths in fiber lasers, applications of 1.55μm ultrafast fiber lasers are more popular. It is because 1.55μm fiber lasers are safe for the human eyes and easy to make mode-locked fiber laser than 1μm and 2μm fiber lasers.

In this thesis research, the employed gain fiber is made by the research team led by Dr. Mukul Chandra Paul in Central Glass & Ceramic Research Institute (CSIR).The investigation of such a fiber laser is divided into three parts, namely the soliton mode-locked fiber laser, mode-locked fiber laser amplifier, and PbS QD-based thin film mode-locked fiber laser. The mode-locked fiber laser amplifier is formed by a soliton mode-locked fiber laser as the seed laser and a power amplifier. The core-pumping mechanism is employed. After the amplification, pulse energy and peak power of mode-locked fiber laser amplifier can be increased several times. We have demonstrated a mode-locked fiber laser amplifier with the pulse energy of 9.54nJ and peak power of 17.3kW. In addition, the PbS QD-based thin film mode-locked fiber laser is using colloidal PbS quantum dot as the saturable absorber. We have demonstrated a PbS QD mode-locked fiber laser with the pulse energy of 0.76nJ, peak power of 0.36kW and slope efficiency of 22.7%.
摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論與研究動機 1
1.1研究動機 1
1.2論文內容介紹 2
第二章 摻鉺矽酸鹽光纖之廣論與特性介紹 3
2.1稀土光纖的發展 3
2.2鉺離子之特性介紹 4
2.3摻鉺釔鋯鋁矽酸鹽光纖之特性介紹 5
第三章 光纖雷射廣論 8
3.1光纖雷射機制 8
3.1-1雷射幫浦光源 9
3.1-2雷射增益介質 10
3.1-3雷射共振腔 11
3.2鎖模光纖雷射之原理 14
3.3幫浦機制 19
3.3-1纖心幫浦機制 19
3.3-2纖衣幫浦機制 20
第四章 摻鉺矽酸鹽光纖雷射之實驗結果 22
4.1被動式摻鉺矽酸鹽鎖模光纖雷射 22
4.1-1被動式摻鉺矽酸鹽鎖模光纖雷射架設 22
4.1-2被動式摻鉺矽酸鹽鎖模光纖雷射之自相干儀量測 26
4.1-3被動式摻鉺矽酸鹽鎖模光纖雷射之頻譜量測 27
4.2摻鉺矽酸鹽鎖模光纖雷射放大器 30
4.2-1摻鉺矽酸鹽鎖模光纖雷射放大器架設 31
4.2-2摻鉺矽酸鹽鎖模光纖雷射放大器之自相干儀量測 34
4.2-3摻鉺矽酸鹽鎖模光纖雷射放大器之頻譜量測 37
4.2-4摻鉺鎖模光纖雷射放大器實驗結果與模擬探討 39
第五章 以硫化鉛量子點為飽和吸收體之被動式摻鉺鎖模光纖雷射 42
5.1硫化鉛量子點( PBS QDS )材料之特性介紹 42
5.2硫化鉛量子點之摻鉺鎖模光纖雷射 46
5.2-1硫化鉛量子點之摻鉺鎖模光纖雷射架設 46
5.2-2硫化鉛量子點摻鉺鎖模光纖雷射之自相干儀量測 48
5.2-3硫化鉛量子點摻鉺鎖模光纖雷射之頻譜量測 50
第六章 結論與未來展望 52
6.1實驗結果統整 52
6.2未來展望 53
參考文獻 54
[1]財團法人工業技術研究院,飛秒雷射加工技術,物理雙月刊37卷第2期,第17至27頁,2015年4月
[2]P. Balling, P. Křen, P. Mašika and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express, Vol. 17, Issue 11, pp. 9300-9313, 2009.
[3]R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics, pp.219-225, 2008.
[4]N. Mamalis, “Femtosecond laser: the future of cataract surgery?,” J. Cataract Refract. Surg., Vol. 37, Issue 7, pp.1177-1178, 2011.
[5]D. Mao, X. Liu, D. D. Han and H. Lu, “Compact all-fiber laser delivering conventional and dissipative solitons,” Opt. Lett., Vol. 38, Issue 16, 2013.
[6]H. R. Chen, C. Y. Tsai, H. M. Cheng and K. H. Lin, “Hsieh Passive mode locking of ytterbium- and erbiumdoped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express, Vol. 22, Issue 11, pp. 12880-12889, 2014.
[7]N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express, Vol. 16, Issue 13, pp. 9429-9435, 2008.
[8]L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell and E. Mazur, “Nature letter Ashcom Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, Vol. 426, pp. 816-819, 2003.
[9]M C Paul, G Sobon, J Sotor, K M Abramski, J Jagiello, R Kozinski, L Lipinska and M Pal, “A graphene-based mode-locked nano-engineered zirconia–yttria–aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys., Vol. 23, Issue 3, 2013.
[10]D. J. Richardson, J. Nilsson and W. A. Clarkson, “High power fiber lasers current status and future perspectives,” J. Opt. Soc. A. B., Vol. 27, Issue 11, pp. B63-B92, 2010.
[11]Y. W. Lee, J. S. Chang, S. Pas, A. Dher, M. Pal, M. C. Paul, J. T. Lin and Y. W. Jany, “Er3+-doped nano-eryineered yttria stabilized zircoria-alumino silicate fiber for efficient CW and mode-locked laser operation,” accepted, IEEE Photonics Journal, 2016.
[12]Michel J. F. Digonnet, Erik Murphy-Chutorian and Dario G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” J. Quantum Electron., Vol. 38, Issue 12, pp. 1629-1637, 2002.
[13]張浚欣,高效率奈米製程摻鉺釔鋯鋁光纖雷射之研究,碩士論文,國立台北科技大學,台北,2015年
[14]曾翰緯,纖衣幫浦之摻銩矽酸鹽光纖雷射之相關研究,碩士論文,國立台北科技大學,台北,2014年
[15]黃國維,摻鐿釔鋁石榴石自鎖模雷射,碩士論文,國立交通大學,新竹,2012年
[16]L. E. Hargrove, R. L. Fork and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. ,Vol. 5, Issue 4,1964.
[17]書籍, Femtosecond laser pulses, Freie Universität Berlin, P57.
(http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/ FUDISS_derivate _000000005776/09_Chapter05.pdf)
[18]C. Mou, R. Arif, A. Rozhin and S. Turitsyn, “Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber,” Opt. Materials Express, Vol. 2, Issue 6, pp. 884-890, 2012.
[19]D. Mao, X. Liu, L.Wang, H. Lu and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express., Vol. 18, Issue 22, pp. 23024-23029, 2010.
[20]F. X. Kartner and U. Keller, “Stabilization of Soliton-like pulses with a slow saturable absorber,” Opt. Lett., vol. 20, Issue 1, pp. 16-18, 1995.
[21]I. D. Jung, F. X. Kartner, L. R. Brovelli, M. Kamp and U.Keller, “Experimental verification of Soliton mode-locking using only a slow saturable absorber,” Opt. Lett., vol. 20, Issue 18, pp. 1892-1894, 1995.
[22]F. X. Kartner, I. D. Jung and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Select. Topics Quantum Electron., vol. 2, Issue 3, pp. 540-556, 1996.
[23]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett., Vol. 7, Issue 8, pp. 591-596, 2010.
[24]J. S. Peng, L. Zhan, Z. C. Gu, J. M. Liu, S. Y. Luo, X. H. Shen and Q. S. Shen, “Modulation instability in dissipative soliton fiber lasers and its application on cavity net dispersion measurement,” J. Lightw. Technol., Vol. 30, Issue 16, pp. 2707-2712, 2012.
[25]S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett., Vol. 28, Issue 8, pp. 806–808, 1992.
[26]M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electronics., Vol. 30, Issue 6, pp. 1469–1477, 1994.
[27]張俊霖,賴柏延,黎延垠,李穎玟,陳仕宏及黃升龍,「高功率奈秒摻鐿光纖主從式雷射放大器系統」,科儀新知,189期,第30至43頁,2012年8月
[28]Time-Bandwidth Product Available online:
(http://www.cmxr.com/Education/TBproduct.html)
[29]W. L. Barnes, P. R. Morkel, L. Reekie and D. N. Payne, “High-quantum-efficiency Er3+ fiber lasers pumped at 980 nm,” Opt. Lett., Vol. 14, Issue 18, 1989.
[30]Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett., Vol. 11, Issue 5, 2014.
[31]C. Mou, R. Arif, A. Rozhin and S. Turitsyn, “Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber,” Opt. Materials Express, Vol. 2, Issue 6, pp. 884-890, 2012.
[32]LIEKKITM Application Designer v4.0. Available online: (http://www.nlight.net/download/lad (accessed on 28 November 2013).
[33]Y. W. Lee, C. M. Chen, C. W. Huang, S. K. Chen and J. R. Jiang, “Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable abosorber,” Opt. Express, vol. 24, Issue.10, pp. 10675-10681, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top