(3.238.173.209) 您好!臺灣時間:2021/05/09 17:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊賢
研究生(外文):Jyun-Sian Chen
論文名稱:次太赫茲同調聲學聲子震盪於氧化鋅/氧化鎂鋅多重量子井之研究
論文名稱(外文):Investigation of sub-terahertz coherent acoustic phonon oscillations from ZnO/ZnMgO MQW
指導教授:林家弘林家弘引用關係
指導教授(外文):Ja-Hon Lin
口試委員:林家弘劉維仁賴暎杰謝文峰
口試日期:2016-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:泵探測量測技術同調聲學聲子多重量子井氧化鋅/氧化鎂鋅
外文關鍵詞:pump probe techniquecoherent acoustic phononmultiple quantum wellsZnO/ZnMgO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此研究中,我利用簡併式泵探測技術,於激子共振波段量測成長在c平面藍寶石基板上氧化鋅/氧化鎂鋅多重量子井的同調聲學聲子震盪,當激發光子能量落在小於能帶間隙且大於激子共振的波段之間,可以量測到明顯得震盪訊號疊加在瞬時穿透率與反射率的圖形上,並利用經驗模態分解方法純化得到對稱的震盪訊號,利用傅立葉轉換求得震盪頻率可推算出多重量子井的週期,且演示了同調聲學聲子震盪源自於材料結構,藉由光激發載子屏蔽部分內電場(壓電場)所產生,當激發光子能量位於能帶邊緣的位置,同調聲學聲子震盪訊號顯示為一個隨時間衰減的單頻震盪訊號,而震盪震幅會隨著激發光源的功率增加而線性成長且沒有飽和,然而,當激發光子能量位於激子共振的區域時,因為能帶重整效應的產生使折射率產生變化,因此產生額外的震盪頻率,此外,當激發光源的功率增加到10毫瓦以上時,因為電場屏蔽的效應的飽和,震盪震幅也將會逐漸飽和,本研究調查了產生於氧化鋅/氧化鎂鋅的同調聲學聲子現象,有助於了解載子動態的交互作用以及發展量測奈米結構的檢測裝置。
In this work, the coherent acoustic phonon oscillation (CAP) was investigated around the exciton resonance of ZnO/ZnMgO multiple quantum wells (MQWs) on c-plane sapphire by degenerate pump-probe measurement. As the excited photon energy below the bandedge but above the exaction resonance, the symmetric damped oscillation signals were measured from the transient transmittance and reflectance trace and purified through the Empirical Mode Decomposition. The period of MQW can be obtained from the FFT of retrieved oscillation frequency that demonstrated the CAP is resulted from the structured as the internal filed was partial screened by the photo-excited carriers. As the excited photon energy around the bandedge, the CAP single reveal the monotonic damped oscillation signal and the amplitude increase with the pump power without saturation. However, as the excited photon energy near the exciton resonance, additional oscillation frequency, resulting from the refractive index change by the BGR effect. In addition, the oscillation amplitude saturates as excited pump power above 10 mW which might be attributed to saturation due to the saturation of the field screening effect. The investigation of intriguing CAP oscillation from ZnO/ZnMgO MQW is helpful to understand the carrier interaction and develop the phonon detection device for diagnosis of nanostructures.
摘 要 i
ABSTRACT ii
誌謝 iv
Contents v
List of Tables vi
List of Figures vii
Chapter 1 INTRODUCTION 1
1.1 Introduction of ZnO and ZnO/ZnMgO quantum well 1
1.2 Time reslove measurement of ZnO 3
1.3 Coherent acoustic phonon in semiconductor 5
1.4 Motivation 8
Chapter 2 THEORETICAL BACKGROUND 9
2.1 Femtosecond pump-probe spectroscopy 9
2.2 Carrier dynamics of semiconductor 13
2.3 QCSE and carrier screening effect 17
2.4 Mechanism of coherent acoustic phonon (CAP) in MQW 19
2.5 The Hilbert-Huang Transform (HHT) 21
2.5.1 The empirical mode decomposition (EMD) 21
Chapter 3 EXPERIMENTAL SETUP 24
3.1 Sample preparation 24
3.2 Photoluminescence experiment framework 25
3.3 Reflection spectrum framework 26
3.4 Pump-probe experiment framework 27
Chapter 4 RESULTS AND DISCUSSION 29
4.1 X-ray diffraction, Photoluminescence and reflectance spectrum 29
4.2 Carrier dynamics in ZnO/ZnMgO multiple quantum well (MQW) 33
4.3 Carrier dynamics and CAP near bandedge (371nm) 35
4.3.1 Empirical Mode Decomposition (EMD) 38
4.4 Carrier dynamics and CAP near exciton resonance 41
4.4.1 Empirical Mode Decomposition (EMD) 43
Chapter 5 CONCLUSION 46
Reference 47
[1]C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures , Elsevier Science (2006)
[2]C. Klingshirn, "ZnO: From basics towards applications", Physica Status Solidi B,
vol. 244, no. 9, 2007, pp. 3027-3073.
[3]Y. Chen, D. M. Bagnall, H.J. Koh, K.T. Park, K. Hi., Z. Zhu, and Takafumi, "Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization", J. Appl. Phys., vol. 84, no. 7, 1998, pp. 3912-3918.
[4]J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, "Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements", Appl. Phys. Lett. vol. 71, 1997, pp. 2572.
[5]Z. L. Wang, Zinc Oxide Bulk, Thin Films and Nanostructures, edited by C. Jagadish and S. J. Pearton (Elsevier, Oxford, 2006), pp. 339.
[6]H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, “Enhancement of exciton binding energies in ZnO/ZnMgO multi-quantum wells”, J. Appl. Phys, vol 91, No. 4, 2002, pp. 1993.
[7]T. Makino, Y. Segawa, M. Kawasaki, "Analytical study on exciton longitudinal optical phonon coupling and comparison with experiment for ZnO quantum wells", J. Appl. Phys, vol. 97, 2005, pp. 106111.
[8]Yamamoto A, Kido T, Goto Y F, Chen Y, Yao T and Kasuya, "Dynamics of photoexcited carriers in ZnO epitaxial thin films", Appl. Phys. Lett., vol.75,1999, pp. 469.

[9]C.-K. Sun, S.-Z. Sun, K. -H. Lin. K.Y.-J. Zhang, H.-L. Liu, "Ultrafast carrier dynamics in ZnO nanorods", Appl. Phys. Lett. 2005, vol.87, pp. 023106.
[10]Johnson J C, Knutsen K P, Yan H Q, Law M, Zhang Y F, Yang P D and Saykally R J "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers", Nano Lett, vol. 4, 2004, pp. 197.
[11]P.-C. Ou, J.-H. Lin, C.-A. Change, W.-R. Liu, W.-F. Hsieh et al, "Spectral dependence of transient reflectance in a ZnO epitaxial film at room temperature", J. Phys. D: Appl. Phys., vol. 43, no. 2, 2010, pp. 495103-495107.
[12]P.-C. Ou, W.-R. Liu, H.-J. Ton, J.-H Lin and W.-F Hsieh, "Ultrafast relaxation and absorption saturation at near exaction resonance in a thin ZnO epilayer", J. Appl. Phys., Vol. 49, no. 1, 2011, pp. 201-207.
[13]X.-M. Wen, J A Davis, D. McDonald, L. V. Dao, P. Hannaford, V.A.Coleman, H.H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue and M.Yano, "Ultrafast dynamics in ZnO/ZnMgO multiple quantum wells", Nanotechnology , 2007, vol. 18, pp. 315403.
[14]H. T. Grahn, D. A. Young, H. J. Maris, J. Tauc, J. M. Hong and T. P. Smith, "Sound velocity and index of refraction of AlAs measured by picosecond ultrasonics", Appl. Phys. Lett., vol. 53, no. 21, 1988, pp. 20232024.
[15]G. D. Sanders, C. J. Stanton and C. S. Kim, Phys. Rev. B, "Theory of coherent acoustic phonons in InxGa1-xN/GaN multiple quantum wells", vol. 64, no. 23, 2001, pp. 235316.
[16]H. T. Grahn, D. A. Young, H. J. Maris, J. Tauc, J. M. Hong and T. P. Smith, "Sound velocity and index of refraction of AlAs measured by picosecond ultrasonics", Appl. Phys. Lett., vol. 53, no. 21, 1988, pp. 20232024.

[17]O. B. Wright, "Ultrafast nonequilibrium stress generation in gold and silver", Phys. Rev. B, vol. 49, no. 14, 1994, pp. 9985-9988.
[18]O. B. Wright, B. Perrin, O. Matsuda and V. E. Gusev, "Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses", Phys. Rev. B, vol. 64, no. 8, 2001, pp. 81202.
[19]S. Wu, P. Geiser, J. Jun, J. Karpinski, J.-R. Park and Roman Sobolewski, "Long-lived, coherent acoustic phonon oscillation in GaN single crystals", Appl. Phys. Lett., vol. 88, no. 4, 2006, pp. 041917.
[20]W. -H. Liu, W. X., W.-P Guo, D. X., T. H., T.-P. Ma, H.-C. Yuan, Y.-H Wu, H.-B. Zhao, X.-C Shen, and Z.-G. Chen, "Coherent scattering of exciton polaritons and acoustic phonons in a ZnO single crystal", Phys. Rev. B. vol. 89, 2014, pp. 201201(R).
[21]J.-H. Lin, Y.-K. Shen, Y.-S. Huang, C.-H. Lu, Y.-H. Chen, W.-R. Liu, W.-S. Li, W.-C. Lee, M.-W. Hong, J.-R. Kwo, C.-H. Hsu, and W.-F. Hsieh "Interference of coherent acoustic phonons excited below exciton resonance in a c-plane ZnO epi-film on oxide-buffered Si(111)" submitted to J. Phys. D: Appl. Phys.
[22]C.-K. Sun, J.-C. Liang, and X.-Y. Yu, "Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields" Phys. Rev. Lett. vol. 84, 2000, pp. 179-182.
[23]J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, "Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers", Appl. Phys. Lett., vol. 80, no. 25, 2002, pp. 4723.


[24]T.-M. Liu, S.-Z Sun, C.-F. Chang, C.-C. Pan, G.-T. Chen, and J.-I. Chyi, Vitalyi Gusev, C.-K. Sun, "Anharmonic decay of subterahertz coherent acoustic phonons in GaN", Appl. Phys. Lett., vol. 90, 200, pp. 041902.
[25]K.-H. Lin, C.-T. Yu, S.-Z Sun, H.-P. Chen, C.-C. Pan, J.-I. Chyi, S.-W. Huang, P.-C. Li, C.-K. Sun, "Two-dimensional nanoultrasonic imaging by using acoustic nanowaves", Appl. Phys. Lett., vol. 89, 2006, pp. 043106.
[26]Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. G., K.-H. Lin, and C.-K. Sun, "Efficient generation of coherent acoustic phonons in (111) In Ga As ∕ Ga As multiple quantum wells through piezoelectric effects", Appl. Phys. Lett., vol. 90, 2007, pp.172102.
[27]Andreas Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors", J. Appl. Phys., vol. 83, no. 4, 1998, pp.1789-1830.
[28]Y. Tsuchiya, "High-density optical MUSE disk", SPIE, vol. 1499, 1991, pp.244.
[29]E. O. Goebel, W. Graudzus, and P. H. Liang, J. Lumin. 24, 1981, pp. 573.
[30]H. Mahr and M. D. Hirch, "An optical up-conversion light gate with picosecond resolution", Opt. Commun., vol. 13, no. 2, 1975, pp. 96-99.
[31]A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe reflectivity study of silicon carrier dynamics", Phys. Rev. B, vol. 66, no. 16, 2002, pp. 165217-165227.
[32]Andreas Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors", J. Appl. Phys., vol. 83, no. 4, 1998, pp. 1789-1830.
[33]K. T. Tsen, Ultrafast Physical Processes in Semiconductors, Academic Press, 2001, pp. 178.
[34]N.Holonyak and Jr., Introduction to Semiconductor Optics, Prentice-Hall International, Inc. 1993.

[35]P. A. Wolff, "Theory of the Band Structure of Very Degenerate Semiconductors", Phys. Rev., vol. 126, 1962, pp. 405-412.
[36]M. Yanoa, K. Hashimotoa, K. Fujimotoa, K. Koikea, S. Sasaa, M. Inouea, Y. Uetsujib, T. Ohnishib, K. Inabac, “Polarization-induced two-dimensional electron gas at Zn1-xMgxO/ZnO heterointerface”, Journal of Crystal Growth, vol. 301-302, 2007, pp. 353-357 .
[37]J. A. Davis, C. Jagadish, “Ultrafast spectroscopy of ZnO/ZnMgO quantum wells”, Laser & Photon. Rev., vol. 3, 2009, pp. 85–96 .
[38]D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink Phys. Rev. B, vol.33, 1986, pp. 6976.
[39]Huang, N.E., Long, S.R., and Shen, Z., "The mechanism for frequency downshift in nonlinear wave evolution", Adv. Appl. Mech., vol. 32, 1996, pp. 59-111
[40]Sean W. King, Milan Milosevic, "A method to extract absorption coefficient of thin films from transmission spectra of the films on thick substrates", J. Appl. Phys., vol. 111, 2012, pp. 073109.
[41]Tauc J, Grigorovici R and Vancu A , "Optical Properties and Electronic Structure of Amorphous Germanium", Phys. Status Solidi, vol. 15, 1966, pp. 627-637.
[42]C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc,"Surface generation and detection of phonons by picosecond light pulses", Phys. Rev. B, vol. 34, 1986, pp. 4129.
電子全文 電子全文(網際網路公開日期:20210818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔