(3.210.184.142) 您好!臺灣時間:2021/05/09 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐錫陽
研究生(外文):Hsi-Yang Hsu
論文名稱:還原法產生銀奈米顆粒以提昇表面拉曼散射之研究
論文名稱(外文):Study of Surface Enhanced Raman Scattering Based on Ag Nanoparticles Produced by Reduction Process
指導教授:王子建
口試委員:魏培坤江海邦任貽均
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:表面增強拉曼散射奈米顆粒質子交換鈮酸鋰
外文關鍵詞:SERSnanoparticlesproton exchangelithium niobate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別使用三種不同製程之方式來製作表面增強拉曼散射(Surface Enhanced Raman Scattering ; SERS)晶片。第一種製程為在鈮酸鋰+Z面定義出質子交換遮罩圖樣,將晶片使用質子交換的方式做出週期性的極化反轉結構,利用質子交換使鈮酸鋰表面產生電場,以熱退火使質子交換橫向擴散區域增加,第二種製程為在鈮酸鋰+Z面上定義出鈦膜圖樣,晶片以鈦擴散的方式做出週期性的極化反轉結構,鈦擴散區域會出現表面電場,以上週期性極化反轉結構利用波長為254奈米之光源照射進行光化學沉積,將滴在晶片上的硝酸銀溶液還原出銀奈米顆粒。第三種製程為利用多靶濺鍍系統在光學玻璃上製作出不同組成比例的氧化銀氧化矽合金,再使用快速熱退火系統將氧化銀還原成銀奈米顆粒。最後將表面還原出銀顆粒之三種晶片滴上R6G溶液來進行拉曼的量測,比較其拉曼散射訊號之增強效應,由拉曼量測結果發現拉曼散射訊號增強最多的為質子交換SERS晶片。
This work focuses on fabricating Surface Enhanced Raman Scattering chip in three different ways. The first one is to define mask for proton exchange on the +Z cut of lithium niobate, creating periodically domain inversion structure. And the electric field is built up on the surface of the lithium niobate by the assistance of proton exchange. Finally, the lateral diffusion is enhanced by annealing. In the second way, we fabricated periodically poled structure on +Z cut LiNbO3 is caused by the diffusion of the periodic pattern of titanium film into the substrate, the surface electric fields exist on the Ti indiffused area. The AgNO3 solution was pipetted on the periodicity structure of lithium niobate substrate. The substrate was illuminated by 254 nm wavelength UVC light to produce silver nanoparticles. The last one is co-sputtering AgOx and SiO2 film with different composition ratio on optical glass by using RF magnetron sputter. After sputtering, silver nanoparticles were produced by the rapid thermal annealing system. Finally, We were pipped R6G solution on 3 different kinds SERS chips and measured the Raman scattering intensity. The best enhancement of Raman intensity is proton exchanged lithium niobate SERS chip.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix

第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 論文概述 9

第二章 理論介紹 10
2.1 表面電漿共振簡介 10
2.2 表面電漿波之激發 13
2.3 侷域性表面電漿共振 18
2.4 拉曼散射理論 19
2.5 表面增強拉曼散射(SERS)理論 22
2.6 有機染料Rhodamine 6G特性 23
2.7 表面增強拉曼散射增強因子 25

第三章 表面增強拉曼散射晶片製作 26
3.1 製程步驟介紹 26
3.1.1晶圓切割 26
3.1.2晶片清洗 27
3.1.3薄膜沉積 28
3.1.4光微影製程 30
3.1.5蝕刻技術 33
3.1.6質子交換製程 33
3.1.7鈦擴散製程 35
3.2 質子交換SERS晶片製程步驟 35
3.3 鈦擴散SERS晶片製程步驟 38
3.4 射頻共濺鍍SERS晶片製程步驟 40


第四章 結果與討論 42
4.1 質子交換SERS晶片 42
4.2 鈦擴散SERS晶片 55
4.3 射頻共濺鍍SERS晶片 58

第五章 結論 61

參考文獻 62
中英文名詞對照表 66
附件:發表於2015年Optics & Photonics Taiwan, International Conference 國際研討會之論文 68
[1]M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at silver electrode,” Chem. Phys. Lett., vol. 26, no.2, pp.163-166, 1974.
[2]Y. Yang, Z. Y. Li, K. Yamaguchi, M. Tanemura, Z. R. Huang, D. L. Jiang, Y. H. Chen, F. Zhou and M. Nogami “Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics,” Nanoscale, vol. 4, pp.2663-2669, 2012.
[3]K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. V. Duyne, “Surface-Enhanced Raman Spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A, vol. 113, no.16, pp.4581-4586, 2009.
[4]H. Schmidt, N. B. Ha, J. Pfannkuche , H. Amann, H. D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Pollut. Bull., vol. 49, pp.229-234, 2004.
[5]S. S. Nanda, M. J. Kim, K. S. Yeom, S. S. An, H. Ju, and D. K. Yi, “Raman spectrum of graphene with its versatile future perspectives,” TrAC, Trends Anal. Chem., vol. 80, pp.125-131, 2016.
[6]S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano. Lett., vol. 6, no.11, pp.2630-2636, 2008.
[7]K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc., vol. 56, no.2, pp.150-154, 2002.
[8]J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev., vol. 37, pp.1052-1060, 2008.
[9]C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalidb, S. M. Salimb, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens Bioelectron., vol. 24, no.2, pp.216-221, 2008.
[10]N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. L. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano., vol. 6, no.2, pp.7373-7380, 2012.
[11]M. L. Tseng, B. H. Leu, P. Y. Li, K. S. Chung, H. P. Chiang, “Multi-color surface plasmon-enhanced photoluminescence of organic dyes using annealed AgOx thin film,” Plasmonics, vol.10, pp.1301-1305, 2015.
[12]S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C, vol. 116, pp.26543-26550, 2012.
[13]X. Y. Liu, K. Kitamura, Q. M. Yu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Tech. Adv. Mater., vol.14, pp.055011, 2013.
[14]邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,第二十八卷,第二期,第472-485頁,2006。
[15]吳民耀,劉威志,「表面電漿子理論與模擬」,物理雙月刊,第二十八卷,第二期,第486-496頁,2006。
[16]K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., vol.58, pp.267-297, 2007.
[17]C. V. Raman, “A new radiation,” Indian J. Phys., vol. 2, pp.387-389, 1928.
[18]R. S. Das, and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc., vol. 57, no.2, pp.163-176, 2011.
[19]J. R. Ferraro, K. Nakamoto, and C. W. Brown, “Introductory Raman spectroscopy,” 2003.
[20]M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles,” Appl. Opt., vol. 19, no. 19, pp.3373-3388, 1980.
[21]A. Campion, and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev., vol. 27, no. 4, pp.241-250, 1998.
[22]A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc., vol.121, no.43, pp.9932 -9939, 1999.
[23]A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B, vol. 104, no. 50, pp.11965-11971, 2000.
[24]J. Rahomaki, T. Nuutinen, L. Karvonen, S. Honkanen, and P. Vahimaa, “Horizontal slot waveguide channel for enhanced Raman scattering,” Opt. Express, vol. 21, no. 7, pp.9060-9068, 2013.
[25]Y. J. Kwon, D. H. Son, S. J. Ahn, M. S. Kim, and K. Kim, “Vibrational spectroscopic investigation of benzoic acid adsorbed on silver,” J. Phys. Chem., vol. 98, no.34, pp.8481-8487, 1994.
[26]S. Damm, N. C. Carville, M. Manzo, K. Gallo, S. Lopez, T. E. Keyes, R. J. Forster, B. J. Rodriguez, and J. H. Rice, “Formation of ferroelectrically defined Ag nanoarray patterns,” SPIE Photonics Europe, vol. 9126, pp. 91260Y, 2014.
[28]M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A, vol. 113, no. 16, pp.3932-3939, 2009.
[28]A. Michota, and J. Bukowska, “Surface‐enhanced Raman scattering (SERS) of 4‐mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc., vol. 34, no1, pp.21-25, 2003.
[28]M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A, vol. 113, no. 16, pp.3932-3939, 2009.
[29]G. M. Herrera, A. C. Padilla and S. P. Hernandez-Rivera, “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation,” Nanomaterials, vol. 3, no1, pp.158-172, 2013.
[30]E. L. Holthoff , D. N. Stratis-Cullum, and M. E. Hankusr, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” J. Sens., vol. 11, pp.2700 -2714, 2011.
[31]E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C, vol. 111, no. 37, pp.13794-13803, 2007.
[32]M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett., vol. 88, no. 14, pp.143121, 2006.
[33]T. J. Wang, K. C. Hsu, Y. C. Liu, C. H. Lai, and H. P. Chiang, “Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter,” J. Opt., vol. 18, no. 5, pp.055006, 2016.
[34]F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett., vol. 39, no. 7, pp.1841-1844, 2014.
[35]A. Alcazardev, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, “Temperature effects in proton exchanged LiNbO3 waveguides,” Appl. Phys. B, vol. 79, no. 7, pp. 845-849, 2004.
[36]E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” J. Lightwave Technol., vol. 11, no. 2, pp. 277-284, 1993.
[37]K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Low-loss channel waveguides in MgO: LiNbO3 and LiTaO3 by pyrophosphoric acid proton exchange,” Jpn. J. Appl. Phys., vol. 31, no. 4, pp.1059-1064, 1992.
[38]E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Photon. Technol. Lett., vol. 3, pp.1006-1008, 1991.
[39]J. L. Jackel, C. E. Rice, and J. J. Veselka, “Composition control in proton-exchanged LiNbO3,” Electron. Lett., vol. 10, no. 19, pp.387-388, 1983.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔