跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃上豪
研究生(外文):Shang-Hao Huang
論文名稱:以角頻譜方法設計非平行平面繞射光場之繞射光學元件的研究
論文名稱(外文):The Study of Diffraction Optical Elements for Diffraction Field in Non-parallel Planes Using Angular Spectrum Method
指導教授:徐巍峰
口試委員:林正峰鄭益祥
口試日期:2016-08-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:傾斜繞射光場繞射光學元件3D立體投影角頻譜
外文關鍵詞:tilted planediffractive optical elementsthree dimensional imageangular spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用繞射光學元件來產生旋轉的目標繞射光場,設計時利用角頻譜方法來計算光場的傳遞結果。因為角頻譜在純量繞射理論中,是一個無近似且有明確物理意義的方法,並且可以藉由修改及優化其傳遞函數所含的空間頻率分量,達到產生旋轉目標平面光場的目的。
由遞迴角頻譜演算法模擬出的目標圖形繞射光學元件時,輸入至反射式相位型空間光調變器,並在旋轉的觀測平面上觀察角頻譜理論應用及修正後投影結果是的正確性。由實驗結果發現,隨著所設定傳遞距離的增加,旋轉的效果會因為景深被拉長而降低,因此,在短傳遞距離(30cm)之下,旋轉的成像效果最佳;在實現0至85度的旋轉成像投影方面,並根據實驗結果可以推論出角頻譜最大可用的旋轉角度約是70~75度。
而角頻譜在旋轉目標場的應用,可以自單一的目標平面延伸至由數個多邊形組成的曲面,進而控制其光強分佈後,便能使光動力療法的治療效率提升。此外,在體積式3D顯示器以及全像式顯示器的建立,亦皆須從旋轉目標之建立為基礎,方能實現。
In the study, we used the diffractive optical elements (DOEs) to generate tilted diffractive field using an angular spectrum (AS) method to calculate the propagation results of light field. The AS has the capability of fast and exact calculation for propagating waves, especially, for the optical fields in a tilted plane by modifying and optimizing the spatial frequency component of the transfer function.
The DOEs designed by the iterative angular spectrum algorithm (IASA) successfully generate an approximate target pattern in a tilted plane using a spatial light modulator. The experimental results present that as the propagation distance is increased, the effect of rotation is reduced because the depth of field is elongated. Therefore, the best effect of image rotation is obtained for short propagation distance such as 30cm. We changed the tilted angle of the projection plane from 0 to 85 degrees, and the maximum angle of the tilted plane to obtain clear projection images occurs at 75 degrees in which the simulations were conducted using the AS method.
The application of angular spectrum in the tilted target field can be extended from a single target plane to a surface composed of a number of polygons. The intensity of the light field can be controlled such that the treatment efficiency of photodynamic therapy can be improved. In addition, the 3D image display in the volume 3D display and holographic display can also be implemented by the proposed method.
目錄
摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1.1研究背景 1
1.2角頻譜旋轉的應用 2
1.3研究動機 5
1.4論文架構 6
第二章 論文回顧 7
2.1基礎限制條件的確立 7
2.2傳遞函數的演進 8
2.3遞迴角頻譜演算法(Iterative angular spectrum algorithm, IASA)相關研究 10
第三章 角頻譜 12
3.1角頻譜的物理意義 12
2.2角頻譜的傳遞 14
2.3角頻譜的取樣問題 15
3.4角頻譜傳遞時的空間濾波 17
3.5角頻譜的旋轉目標場 19
3.6角頻譜旋轉後的能量守恆 22
3.7角頻譜傾斜光場模擬 25
第四章 模擬及實驗結果 30
4.1遞迴角頻譜演算法(Iterative angular spectrum algorithm, IASA) 30
4.2實驗架構 39
4.3 實驗拍攝結果 40
4.3.1 固定成像距離,並於各設定成像角度時的觀測 41
4.3.2 固定成像距離與角度,並於各角度下的觀測 50
第五章 結論與未來展望 57
5. 1 結論 57
5.2 未來展望 58
5.2.1 空間濾波問題 58
5.2.2 取樣問題 58
參考文獻 61
參考文獻


[1]Available from: http://www.himax.com.tw/wp-content/uploads/2015/07/Himax _Unveils_Front-Lit_LCOS_PR_cht.pdf.
[2]Available from:http://mobileai.net/2006/10/28/dlp%E6%8A%95%E5%BD %B1%E6%A9%9F%E8%88%87lcd%E6%8A%95%E5%BD%B1%E6%A9%9F%E7%9A%84%E6%AF%94%E8%BC%83/.
[3]Available from: http://www.techbang.com/posts/22312-business-projector -that-you-choose-color-brightness-setting-up-flexible-smart-mobile-devices -links-three-elements-indispensable.
[4]翁懿萱, 應用於3D立體顯示技術之光學架構之研究與設計. 國立臺北科技大學光電工程系研究所學位論文, 2015: pp. 1-47
[5]K. Matsushima, H. Nishi, and S. Nakahara, Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography, Journal of Electronic Imaging, 2012, 21 (2), pp. 1-8.
[6]K. Matsushima, Computer-generated holograms for three-dimensional surface objects with shade and texture, Applied Optics, 2005, 44, pp. 4607–4614.
[7]K. Matsushima and S. Nakahara, Extremely high-definition full-parallax computergenerated hologram created by the polygon-based method, Applied Optics, 2009, 48, pp. H54–H63.
[8]N. L Oleinick, R. L Morris, T Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photoch Photobio Sci. 2002 Jan;11121.
[9]Available from: http://www.ambicarehealth.com/ambulight-pdt/.
[10]Cristina Kurachi and Vanderlei Salvador Bagnato, Photodynamic Therapy, Optics & Photonics news, 2016, OSA, pp. 32-38.
[11]Tullio Tommasi and Bruno Bianco, Frequency analysis of light diffraction between rotated planes. Optics Letters, 1992. Vol. 17, No. 8, pp. 556-558.
[12]Delen, N. and B. Hooker, Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach. JOSA A, 1998. 15(4): pp. 857-867.
[13]K. Matsushima, H. Schimmel, and F. Wyrowski, Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves. JOSA A, 2003. 20(9): pp. 1755-1762.
[14]Goodman, J.W., Introduction to Fourier optics (3rd ed.). 2005: Roberts and Company Publishers, Englewood, Colorado.
[15]K. Matsushima and T. Shimobaba, Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Optics Express, 2009. 17(22): pp. 19662-19673.
[16]K. Matsushima, Shifted angular spectrum method for off-axis numerical propagation. Optics Express, 2010. Vol. 18, Issue 17: pp. 18453-18463.
[17]P. Hao, Wide-window angular spectrum method for diffraction propagation in far and near field. Optics Letters, 2012. Vol. 37, No. 23: pp. 4943-4946.
[18]Mellin, S. D. and G. P. Nordin, Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design. Optics Express, 2001, 8(13): pp. 705-722.
[19]Zhao, Y., et al. (2004). Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination. Optics Letters 29(7): pp. 664-666.
[20]Kazemi, S. H., et al., Comparison of iterative angular spectrum and optimal rotation angle methods in designing beam-fanners. Optics Express, 2009, 17(17): pp. 14825-14831.
[21]S. Yoshida, Design and evaluation of diffractive optical elements; optimization by
using iterative angular spectrum approach and evaluation based on vector diffraction theory. Optical Sensors 2009, Vol. 7356.
[22]Yong-Hae Kim, Off-axis angular spectrum method with variable sampling interval. Optic Communications, 2015. 348: pp.31-37.
[23]Yong-Hae Kim, Exact light propagation between rotated planes using non-uniform sampling and angular spectrum method. Optic Communications, 2015. 344: pp. 1-6.
[24]Yong-Hae Kim, Non-uniform sampling and wide range angular spectrum method. Journal of Optics, 2014. 16(12)
[25]王祥宇, 以角頻譜計算繞射場之研究. 國立臺北科技大學光電工程系研究所學位論文, 2007: pp. 1-65
[26]Tomoyoshi Shimobaba, Non-uniform sampled scalar diffraction calculation using non-uniform fast Fourier transform, Optics Letters, 2013, Vol. 38, Issue 23, pp. 5130-5133.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top