(3.227.249.155) 您好!臺灣時間:2021/05/07 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家通
研究生(外文):HSU,CHIA-TUNG
論文名稱:電化學法沉積氫氧機磷灰石於奈米氧化鈦管對纖維母細胞生長之研究
論文名稱(外文):NIH-3T3 Fibroblast studies on the ATO with electrochemical deposition of hydroxyapatite
指導教授:陳適範陳適範引用關係
指導教授(外文):CHEN,SHI-FAN
口試委員:謝章興王錫九陳建仲陳柏均
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:奈米鈦管纖維母細胞陽極處理氫氧基磷灰石
外文關鍵詞:Nano-titanium-tubeFibroblastAnodicHydroxyapatite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金因具有良好的生物相容性與生物親和性、機械性質而被廣泛應用於牙科與骨科之臨床取代性生醫材料。本研究探討鈦金屬經表面改質成多孔結構的二氧化鈦管狀結構。其大小為奈米級。並藉由氫氧基磷灰石披覆在生醫金屬鈦表面上可以有效改善其生物相容性與生物活性。因此,研究中採用了四種試片,依序分別為不經任何表面改質處理的鈦試片(Ti)。藉由陽極處理法使表面具有奈米狀結構孔洞的二氧化鈦奈米管(NTi)。將二氧化鈦奈米管經熱處理法升溫至500℃
讓二氧化鈦奈米管由非晶質(amorphous)相轉變為生物相容性佳,且結構穩定性更好的銳鈦礦(Anatase)相結構(ANTi)。最後是將鈦試片,以電化學方法沉積氫氧機磷灰石(Hydroxyapatite),試片代號為(HNTi)。以上四組試片,分別將探討不同的表面形貌來進行細胞培養對纖維母細胞(NIH¬¬¬¬¬¬-3T3 Fibroblast)貼附及增殖的影響,利用掃描式電子顯微鏡(SEM)分析及觀察細胞的形態。
因此,本實驗研究中採用了四種表面改質方式,以測試細胞生長及貼附情形,實驗結果歸納出下列細胞習性的結論:
1.纖維母細胞在12小時會快速貼附於Dish養盤上。
2.纖維母細胞在24小時會開始與細胞周圍相互連接。
3.纖維母細胞養於Dish盤上72小時,需進行分盤。
4.表面形態方面,纖維母細胞在拋光平坦的試片下,生長及繁殖情形最為良好。
5.表面形態方面,含有鈣磷塗層的氫氧機磷灰石的試片,纖維母細胞會較快速貼附於試片。
6.表面形態方面,含有奈米孔洞的試片,細胞生長及情形較為緩慢。
Due to titanium has good biocompatibility and bioaffinity, mechanical properties has been widely used in clinical dentistry and orthopedics of substituting biomaterials. This study investigated the titanium surface-modified titanium dioxide quality tubular structure into the porous structure. Its size is nanoscale. And by hydroxyl apatite coated on biomedical titanium surface can effectively improve the biocompatibility and biological activity. Therefore, the study used four test pieces were sequentially titanium specimen without any surface modification treatment (Ti). By method anodized surface nano-structure having holes titania nanotubes (NTi). The heated heat-treated titanium dioxide nanotubes method to 450℃. Let titania nanotubes of amorphous (amorphous) phase transferred to the biocompatibility and structural stability better anatase (Anatase) phase structure (ANTi). Finally, the titanium specimen electrochemical method for depositing machine apatite hydroxide (Hydroxyapatite) test piece code - named (HNTi). More than four groups of specimens, respectively will explore different materials to perform cell culture on fibroblasts (NIH-3T3 Fibroblast) attachment and proliferation, the use of a scanning electron microscope (SEM) analysis and observation of cell morphology. Fibroblasts can be within 12 to 24 hours attached to the substrate surface.
Therefore, the present study used four surface modification way to test cell growth and attachment situation, the experimental results summarized conclusions following cell habits:
1.fibroblasts in 12 hours quickly attached to the support plate Dish.
2.fibroblasts 24 hours will start to connect to each other and the surrounding cells.
3.fibroblasts keep on Dish plate 72 hours, the need for sub-plate.
4.Surface morphology, fibroblasts in flat polished specimen, growth and reproduction of the most favorable circumstances.
5.The surface morphology, specimen machine apatite hydroxide containing calcium phosphate coating would be more rapid fibroblasts attached to the test strip.
6.The surface morphology, the specimen containing nano-holes, and the growth of cells in the case of relatively slow.
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
第二章 理論與文獻回顧 4
2.1生醫材料基本性質 4
2.1.1良好機械性質 4
2.1.2組織不會與植入材產生生物分解 4
2.1.3良好生物相容性 4
2.1.4良好生物結合性 5
2.2生醫材料分類 6
2.2.1金屬 6
2.2.2陶瓷 6
2.2.3高分子有機聚合體 7
2.2.4複合性材料 7
2.3生醫鈦及鈦合金 8
2.4陽極處理法 9
2.4.1氟化物體系 9
2.4.2氫氟酸體系 10
2.4.3含水有機體系 10
2.5二氧化鈦晶體結構 12
2.6氫氧基磷灰石 15
2.7細胞簡介 19
2.7.1細胞核 19
2.7.2細胞質 19
2.7.3細胞壁 20
2.7.4細胞膜 20
2.8纖維母細胞簡介 21
2.9鈦金屬與鈦合金表面性質對細胞生長 22
第三章 實驗步驟與方法 24
3.1 實驗藥品 24
3.2實驗儀器 25
3.3實驗架構 26
3.4試片製備和處理 27
3.5陽極處理 27
3.6退火熱處理 28
3.7電化學沉積 28
3.8細胞培養 29
3.8.1解凍細胞 29
3.8.2 凍細胞 30
3.8.3 繼代 31
3.8.4計數細胞 31
3.9細胞形態觀察 34
3.9.1 細胞種植 34
3.9.2 細胞固定 34
3.9.3 細胞脫水 34
3.9.4 形態觀察 34
3.10細胞生長測試 35
3.10.1 細胞種植 35
3.10.2 MTT細胞染色 35
3.10.3 光譜儀量測 35
第四章 儀器之簡介 37
4.1 X-ray繞射分析 37
4.2 EDS元素分析 38
4.3掃描式電子顯微鏡 39
4.4光學顯微鏡 40
第五章 結果與討論 41
5.1 奈米鈦管SEM表面形貌分析 41
5.2 奈米管熱處理X-RAY繞射分析 49
5.3 氫氧機磷灰石 SEM表面形貌分析 50
5.4 氫氧機磷灰石XRD結構分析 51
5.5 纖維母細胞OM之觀察 52
5.6 細胞生長標準線 55
5.7 纖維母細胞SEM形態觀察 59
第六章 結論 67
參考文獻 68
[1] Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, and Ma X, "Enhanced osteoblast functions on RGD immobilized surface," Implantol, vol. 2, 2003, pp.73-79.
[2] Nishiguchi S, Fujibayashi S, Kim H M, Kokubo T, and Nakamura T, "Biology of alkali- and heat-treated titanium implants," Biomed. vol. 67. no. 1, 2003, pp. 26-35.
[3] Sukenik C. N, Balachander N, Culp L. A, Lewandowska K, and Merritt K, "Modulation of cell adhesion by modification of titanium surfaces with covalently attached self-assembled monolayers," Biomed Mater, vol. 24, no. 10, 1990, pp. 1307-1323.
[4] Nayab S, Shinawi L, Hobkirk J, Tate T. J, Olsen I, and Jones F. H, "Adhesion of bone cells to ion-implanted titanium," Mater, vol. 14, no. 11, 2003, pp. 991-997.
[5] Faria A. C, Beloti M. M, and Rosa A. L, "Nitric acid passivation does not affect in vitro biocompatibility of titanium," Implants, vol. 18, no. 6, 2003, pp. 820-825.
[6] Le Guéhennec L, Soueidan A, Layrolle P, and Amouriq Y, "Surface treatments of titanium dental implants for rapid osseointegration," Mater, vol. 23, no. 7, 2007, pp. 844-854.
[7] Park Y. J, Song H. J, Kim I, and Yang H. S, "Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation," Mater, vol. 18, no. 4, 2007, pp.565-575.
[8] Yao C. and Webster T. J, "A promising nano-modification technique of titanium implants for orthopedic applications," Emergency Surgery, vol. 6, no. 9 pp. 682-692.
[9] Carlsson S. L, Rouslund T. R, Albrektsson B, Albrektsson T, and Branemark P. I, "Osseointergration of titanium implant," Acta Orthop, vol. 4, 1986, pp. 285 -289.
[10] Urist M. R, Delange R. J, and Finerman G. M. A, "Bone cell differentiation and growth tactors," Science, vol. 22, 1983, pp. 680-686.
[11] Joyce Y. Wang and Joseph D. Bronzino, "Biomaterials," Francis Group, 2007.
[12] Karl Heinz Frosch and Klaus Michael Stürmer, "Metallic Biomaterials in Skeletal Repair," European Journal of Trauma and Emergency Surgery, vol. 32, 2006, pp. 149-159.
[13] K. Ishikawa, S. Matsuya, Y. Miyamoto and K. Kawate, "Comprehensive Structural Integrity," Biomaterials, vol. 9, 2003, pp. 169-214.
[14] S. F. Hulbert, J. C. Bokros, L. Hench, J. W. Wilson and G.Heimke, "Ceramics in clinical applications past present and future," Ceramics in Clinical Applications, 1987, pp. 3-27.
[15] B. L. Seal, T. C. Otero and A. Panitch, "Polymeric biomaterials for tissue and organ regeneration," Materials Science and Engineering, vol. 34, 2001, pp. 147-230.
[16] E. Santos Jr. N. K. Kuromoto and G. A. Soares, "Mechanical properties of titania films used as biomaterials," Materials Chemistry and Physics, vol. 102, no. 1, 2007, pp. 92-97.
[17] Lidia Benea, Eliza Mardare-Danaila, Marilena Mardare, Jean-Pierre Celis, "Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution," Corrosion Science, vol. 80, 2014 , pp. 331-338.
[18] William L. Masterton, Cecile N. Hurley, "Titamium A space Age Metal," Cengage Learning, 2009, pp. 58-64.
[19] Linder L, Albrektsson T, Branemark PI, Hansson HA, Ivarsson B, Jonsson U, andLundstrom I, "Electron microscopic analysis of the bone-titanium interface, " Acta Ortho, vol. 54, no. 1, 1983, pp 45-52.
[20] Yan W. Q, Nakamura T, Kobayashi M, Kim H. M, Miyaji F. and Kokubo T, "Bonding of chemically treated titanium implants to bone," Materials Chemistry and Physics, vol. 37, no. 2, 1997, pp. 267-275.
[21] Takadama H, Kim H M, Kokubo T, and Nakamura T, "TEM-EDX study of mechanismof bone like apatite formation on bioactive titanium metal in simulated body fluid," Corrosion Science, vol. 57, no. 3, 2001, pp. 441-448.
[22] Horbett T. A. and Brash J. L. Proteins at Interfaces, "Physiochemical and BiochemicalStudies," American Chemical Society, 1987, pp. 1-33.
[23] Andrade J. D, "Surface and Interfacial Aspects of Biomedical Polymers," Materials Chemistry and Physics, 1985, pp. 1-80.
[24] Hayato Ohmi, Wai Kian Tan, Zainovia Lockman, Hiroyuki Muto and Atsunori Matsuda, "Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells, " Nanoscale Research Letters, 2015.
[25] Ning Liu, Hamed Mirabolghasemi, Kiyoung Lee, Sergiu P. Albu, Alexei Tighineanu, Marco Altomare and Patrik Schmuki," double walled vs. single walled," Faraday Discussions, vol. 67, 2013, pp. 88-107.
[26] Rani S. Roy, S. C. Paulose, M. Varghese, O. K. Mor, G. K. Kim, S. Yoriya, S.LaTempa, T. J. Grimes, C. A, "Synthesis and applications of electrochemically self-assembled titania nanotube arrays," Chem Phys, vol. 12, no. 12, 2010, pp. 278-280.
[27] G. K, Varghese, O. K, Paulose, M. Shankar, K.Grimes, C. A, "A review onhighly ordered, vertically oriented TiO2 nanotube arrays," Sol Energ Mat, vol. 14, 2006, pp. 2011-2075.
[28] Sepideh Minagar, Christopher C. Berndt, James Wang aand Elena Ivanova, Cuie Wen, "A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces," Acta Biomaterialia, vol. 8, 2012, pp. 2875-2888.
[29] Chien ChonChen, Wern-DareJheng, Chung-KweiLin, "Large-area TiO2 nanotu bedye-sensitized solarcell susing thermal-sprayed stainlesssteel," Ceramics International, vol. 40, 2014, pp. 3221-3226.
[30] Wu. C. Yue, Y. Deng, X. Hua, W. Gao. Z, "Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations," Catalysis, vol. 863, 2004, pp. 93-95.
[31] Zhang H. and Banfield. J. F, "Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates," Thin Solid Films, vol. 104, 2000.
[32] S.-D. Mo and W. Y. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite," Physical review B vol. 51, 1995, pp. 13023-13032.
[33] Park. N. G, Van de Lagemaat, J. Frank, A. J, "Comparison of Dye-Sensitized Rutile and Anatase Based TiO2 Solar Cells," Biomedical Nanotechnology, vol. 104, 2000, pp. 79-89.
[34] Fatemeh Mohandes, Masoud Salavati-Niasari, Mohammadhossein Fathi, Zeinab Fereshte, "Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition," Materials Science and Engineering, vol. 45, 2014, pp. 29-36.
[35] Tadashi kokubo, "Bioceramics and their clinical applications," Journal of Prosthodontic Research, 2008, pp. 367-377.
[36] K. de Groot, "Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism," Materials Science and Engineering, 1983, pp. 1-32, pp. 78-96.
[37] Jones F. H, "Applications of surface science to dental materials and related biomaterials," Surface Science Reports, vol. 42, 2001, pp. 75-205.
[38] Kang Lee, Yong-Hoon Jeong , Yeong-Mu Ko, Han-Cheol Choe, William A. Brantley, "Hydroxyapatite coating on micropore-formed titanium alloy utilizing
electrochemical deposition," Thin Solid Films, vol. 549, 2013, pp.154-158.
[39] Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, and Aref A, "Biomimetic calcium phosphate composite coating of dental implants," Oral Maxillofac Implants, vol. 5, 2006, pp. 738-746.
[40] Palka V, Ivan J, Postrkova E, Kolenclak V, Krsek A, Infner I, and Koerten H K, "Theeffect of biological environment on the surface of titanium and plasma-sprayed layerof hydroxylapatite," Applied Surface Science, 1998, vol. 7 pp. 369-373.
[41] Le Guéhennec L, Soueidan A, Layrolle P, and Amouriq Y, "Surface treatments of titanium dental implants for rapid osseointegration," Applied Surface Science, 2007, vol. 7, pp. 844-854.
[42]陳麗婷、華傑著,”動物細胞產業應用前景評估”,民國92 年。
[43 ]翟中和, “細胞分子生物學” , 九州圖書文物有限公司 2001。
[44]王斐譯, “醫學細胞分子生物學”, 合記圖書出版社 2001。
[45] Jain R. and Von Recum A. F, "Fibroblast attachment to smooth and microtextured PET and thin cp-Ti films," Biomed, vol. 2, 2004, pp. 296-304.
[46] Chang E and Lee T M, "Effect of surface chemistries and characteristics of Ti6Al4V onthe Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution," Biomaterials, vol. 14, 2002, pp. 2917-2925.
[47] Kasemo B, and Lausmaa J, "The role of surface properties and process.Environ," Material-tissue, vol. 5, 1994, pp. 41-45.
[48] Maeusli, P. A., P. R. Bloch, V. Geret, & S.G. P. Christel, A. Meunier, & A. J. Lee, "Surface Characterization of Titanium and Titanium-Alloy, in Biological and Biomechanical Performance of Biomaterial," Amsterdam: Elsevier, 1986, pp.565
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔