(3.236.222.124) 您好!臺灣時間:2021/05/14 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:史晉翰
研究生(外文):Jin-Han, Shih
論文名稱:化學溶液法製備CuCrO2:Fe薄膜及其性質探討
論文名稱(外文):Preparation and properties of Fe–doped CuCrO2 thin films prepared by chemical solution deposition with two–step annealing
指導教授:邱德威
指導教授(外文):Te-Wei, Chiu
口試委員:邱德威楊重光雷健明
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
語文別:英文
中文關鍵詞:化學溶液法CuCrO2P型半導體
外文關鍵詞:two-step annealingChemical solution depositionFe-doped CuCrO2p-type semiconductors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是藉由化學溶液法在無鹼玻璃基板上製備摻雜鐵於銅鉻氧化合物(CuCr1–xFexO2)薄膜上。為了在較低溫製程溫度獲得CuCrO2相薄膜,還原氣氛和退火溫度條件被應於於本實驗中,可以透過兩段式退火方式來獲得單相赤銅鐵礦型CuCrO2薄膜。而CuCrO2薄膜在可見光區域可以達到65%以上穿透率且能係約在3.1 eV;在摻雜15 wt% Fe於薄膜中可以展現出最佳的性質,並有最佳的p-type導電性(44.36 Ω–cm);而在室溫下,Fe3+會導致Fe3+–Cr3+的超交換機制進而有使薄膜具有鐵磁性,且透過摻雜鐵濃度的提高,薄膜的磁性會越大。
Fe–doped copper chromium oxide (CuCr1–xFexO2) thin films were prepared on non–alkali glass substrates by chemical deposition. The effects of the ambient gas and temperature annealing conditions were investigated in order to produce pure CuCrO2 phase thin films at a relatively lower process temperature. A single–phase delafossite CuCrO2 structure was obtained by two–step annealing method. The transmittance of the CuCrO2 thin films was above 65% in the visible region, and the bandgap was estimated as 3.1 eV. The x=15 wt% thin film exhibits the most properties, combining the best p–type conductivity (44.36 Ω–cm). Also, the introduction of Fe3+ leads to the hole–mediated Fe3+–Cr3+ super–exchange coupling responsible for the room–temperature ferromagnetism. The saturation magnetization is strengthened as the Fe concentration increases.
摘 要 i
ABSTRACT ii
誌 謝 iii
TABLE OF CONTENTS iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Aim of this work 3
Chapter 2 Literature review 4
2.1 Introduction of Semiconductor 4
2.2 Transparent Conducting Oxide thin films (TCO) 4
2.3 Delafossite structure 6
2.4 Electrical properties of TCO 7
2.5 Optical properties of TCO 11
2.6 Magnetic properties of TCO 13
2.7 Methods of films preparation 17
Chapter 3 Experimental Methods 20
3.1 Substrates preparation 20
3.2 Preparation of CuCr1–xFexO2 thin films by chemical solution deposition 21
3.2.1 Experimental chemicals 21
3.2.2 Preparation of CuCr1–xFexO2 precursor solution 22
3.2.3 Spin coating deposition 22
3.2.4 Post annealing of CuCr1–xFexO2 thin films 23
3.3 Characterization 24
3.3.1 Crystalline determination 24
3.3.2 Scanning Electron Microscope (SEM) measurement 25
3.3.3 Atomic Force Microscopy (AFM) analysis 27
3.3.4 Electrical properties measurement 28
3.3.5 Optical properties measurement 30
3.3.6 X–ray Photoelectron Spectroscopy (XPS) analysis 34
3.3.7 Vibration Sample Magnetometer (VSM) measurement 35
Chapter 4 Results and Discussion 36
4.1 XRD analysis 36
4.2 Lattice constant of thin films 38
4.3 Morphology 40
4.4 Optical properties 45
4.5 Electrical properties 49
4.6 XPS analysis 52
4.7 Magnetic properties 56
Chapter 5 Conclusions 58
References 59
Future work 63
Paper publications 63
Conference presentations 63
[1]G.J. Exarhos, X.-D. Zhou, Discovery-based design of transparent conducting oxide films, Thin Solid Films. 515 (2007) 7025–7052. doi:10.1016/j.tsf.2007.03.014.
[2]T.W. Chiu, K. Tonooka, N. Kikuchi, Fabrication of transparent CuCrO2:Mg/ZnO p–n junctions prepared by pulsed laser deposition on glass substrate, Vacuum. 83 (2008) 614–617. doi:10.1016/j.vacuum.2008.04.027.
[3]H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO, Appl. Phys. Lett. 77 (2000) 475–477. doi:10.1063/1.127015.
[4]J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., D. H. Rapkine, Zinc-Indium-Oxide - a High-Conductivity Transparent Conducting Oxide, Appl. Phys. Lett. 67 (1995) 2246–2248. doi:10.1063/1.115118.
[5]H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature. 389 (1997) 939–942. doi:10.1038/40087.
[6]T. Joshi, T. R. Senty, R. Trappen, J. Zhou, S. Chen, P. Ferrari, P. Borisov, X. Song, M. B. Holcomb, A. D. Bristow, A. L. Cabrera D. Lederman, Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition, J. Appl. Phys. 117 (2015) 013908. doi:10.1063/1.4905424.
[7]N. Tsuboi, H. Ohara, T. Hoshino, S. Kobayashi, K. Kato, F. Kaneko, Luminescence Properties of Delafossite-Type CuYO2 Doped with Calcium, Oxygen or Rare Earth Tb, Jpn. J. Appl. Phys. 44 (2005) 765–768. doi:10.1143/JJAP.44.765.
[8]M. Beekman, J. Salvador, X. Shi, G.S. Nolas, J. Yang, Characterization of delafossite-type CuCoO2 prepared by ion exchange, J. Alloys Compd. 489 (2010) 336–338. doi:10.1016/j.jallcom.2009.09.124.
[9]S. Götzendörfer, C. Polenzky, S. Ulrich, P. Löbmann, Preparation of CuAlO2 and CuCrO2 thin films by sol–gel processing, Thin Solid Films. 518 (2009) 1153–1156. doi:10.1016/j.tsf.2009.02.153.
[10]P. Zhang, Y. Shi, M. Chi, J.N. Park, G.D. Stucky, E.W. McFarland, L. Gao, Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis, Nanotechnology. 24 (2013) 345704. doi:10.1088/0957-4484/24/34/345704.
[11]M. Asemi, M. Ghanaatshoar, Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method, J. Sol-Gel Sci. Technol. 70 (2014) 416–421. doi:10.1007/s10971-014-3298-4.
[12]H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2, J. Appl. Phys. 88 (2000) 4159. doi:10.1063/1.1308103.
[13]T.W. Chiu, C.H. Chang, L.W. Yang, Y.P. Wang, Preparation of transparent Cu2Y2O5 thin films by RF magnetron sputtering, Appl. Surf. Sci. 354 (2015) 110–114. doi:10.1016/j.apsusc.2015.02.129.
[14]D.S. Kim, S.J. Park, E.K. Jeong, H.K. Lee, S.Y. Choi, Optical and electrical properties of p-type transparent conducting CuAlO2 thin film, Thin Solid Films. 515 (2007) 5103–5108. doi:10.1016/j.tsf.2006.10.044.
[15]H. Gong, Y. Wang, Y. Luo, Nanocrystalline p-type transparent Cu-Al-O semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors, Appl. Phys. Lett. 76 (2000) 3959–3961. doi:10.1063/1.126834.
[16]T.W. Chiu, S.W. Tsai, Y.P. Wang, K.H. Hsu, Preparation of p-type conductive transparent CuCrO2:Mg thin films by chemical solution deposition with two-step annealing, Ceram. Int. 38 (2012) S673–S676. doi:10.1016/j.ceramint.2011.09.048.
[17]Y.F. Wang, Y.J. Gu, T. Wang, W.Z. Shi, Magnetic, optical and electrical properties of Mn-doped CuCrO2 thin films prepared by chemical solution deposition method, J. Sol-Gel Sci. Technol. 59 (2011) 222–227. doi:DOI 10.1007/s10971-011-2487-7.
[18]S. Götzendörfer, R. Bywalez, P. Lobmann, Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol-gel processing, J. Sol-Gel Sci. Technol. 52 (2009) 113–119. doi:10.1007/s10971-009-1989-z.
[19]R. S. Yu, D.-H. Hu, Formation and characterization of p-type semiconductor CuCrO2 thin films prepared by a sol–gel method, Ceram. Int. 41 (2015) 9383–9391. doi:10.1016/j.ceramint.2015.03.313.
[20]M. J. Han, Z. H. Duan, J. Z. Zhang, S. Zhang, Y. W. Li, Z. G. Hu, J. H. Chu, Electronic transition and electrical transport properties of delafossite CuCr1-xMgxO2 (0  x  12%) films prepared by the sol-gel method: A composition dependence study, J. Appl. Phys. 114 (2013) 0–9. doi:10.1063/1.4827856.
[21]K. Tonooka, K. Shimokawa, O. Nishimura, Properties of copper – aluminum oxide films prepared by solution methods, Thin Solid Films. 411 (2002) 129–133.
[22]K. T. Jacob, G. M. Kale, G. N. K. Iyengar, Oxygen potentials , Gibbs " energies and phase relations in the Cu-Cr-O system, J. Mater. Sci. 21 (1986) 2753–2758.
[23]E. Liu, P. Xiao, J.S. Chen, B.C. Lim, L. Li, Ni doped ZnO thin films for diluted magnetic semiconductor materials, Curr. Appl. Phys. 8 (2008) 408–411. doi:10.1016/j.cap.2007.10.025.
[24]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: a spin-based electronics vision for the future., Science. 294 (2001) 1488–1495. doi:10.1126/science.1065389.
[25]H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films. 236 (1993) 27–31. doi:10.1016/0040-6090(93)90636-4.
[26]G. Thomas, Materials science: Invisible circuits, Nature. 389 (1997) 907–908. doi:10.1177/1754045313490905.
[27]N. Duan, A.W. Sleight, M.K. Jayaraj, J. Tate, Transparent p-type conducting CuScO2+x films, Appl. Phys. Lett. 77 (2000) 1325–1326. doi:10.1063/1.1289906.
[28]R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, P-type conductivity in CuCr1-xMgxO2 films and powders, J. Appl. Phys. 89 (2001) 8022–8025. doi:10.1063/1.1372636.
[29]H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions, MRS Bull. 25 (2000) 28–36. doi:10.1557/mrs2000.148.
[30]J. E. Sansonetti, W. C. Martin, Handbook of basic atomic spectroscopic data, J. Phys. Chem. Ref. Data. 34 (2005) 1559–2259. doi:10.1063/1.1800011.
[31]K. Koumoto, H. Koduka, W. S. Seo, Thermoelectric properties of single crystal CuAlO2 with a layered structure, J. Mater. Chem. 11 (2001) 251–252. doi:10.1039/b006850k.
[32]P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley-Interscience. (1972).
[33]F. Lin, C. Gao, X. Zhou, W. Shi, A. Liu, Magnetic, electrical and optical properties of p-type Fe-doped CuCrO2 semiconductor thin films, J. Alloys Compd. 581 (2013) 502–507. doi:10.1016/j.jallcom.2013.07.160.
[34]楊明輝, 透明導電膜, 藝軒圖書出版社. (2006) P.1–92.
[35]A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films, Thin Solid Films. 204 (1991) 255–264. doi:10.1016/0040-6090(91)90067-8.
[36]H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic, Science (80-. ). 281 (1998) 951–956. doi:10.1126/science.281.5379.951.
[37]T. Dietl, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science (80-.). 287 (2000) 1019–1022. doi:10.1126/science.287.5455.1019.
[38] H. Ohno, H. Munekata, T. Penney, S. Vonmolnar, L. L. Chang, Magnetotransport Properties of p-Type (In,Mn) As Diluted Magnetic III-V Semiconductors, Phys. Rev. Lett. 68 (1992) 2664–2667. doi:DOI 10.1103/PhysRevLett.68.2664.
[39]D. Askeland, P. Fulay, W. Wright, The Science and Engineering of Materials, (2010) 773–775.
[40]X. C. Yang, W. Riehemann, M. Dubiel, H. Hofmeister, Nanoscaled ceramic powders produced by laser ablation, Mater. Sci. Eng. B. 95 (2002) 299–307. doi:10.1016/S0921-5107(02)00291-X.
[41]R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767. doi:10.1107/S0567739476001551.
[42]E. Kim, Z. T. Jiang, K. No, Measurement and Calculation of Optical Band Gap of Chromium Aluminum Oxide Films, Jpn. J. Appl. Phys. 39 (2000) 4820–4825. doi:10.1143/JJAP.39.4820.
[43]J. Wang, P. Zheng, D. Li, Z. Deng, W. Dong, R. Tao, X. Fang, Preparation of delafossite-type CuCrO2 films by sol–gel method, J. Alloys Compd. 509 (2011) 5715–5719. doi:10.1016/j.jallcom.2011.02.149.
[44]D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, Magnetic and electrical properties of p-type Mn-doped CuCrO2 semiconductors, J. Phys. D. Appl. Phys. 42 (2009) 055009. doi:10.1088/0022-3727/42/5/055009.
[45]L. Farrell, E. Norton, C.M. Smith, D. Caffrey, I. Shvets, K. Fleischer, Synthesis of nanocrystalline Cu deficient CuCrO2 – a high figure of merit p-type transparent semiconductor, J. Mater. Chem. C. 4 (2016) 126–134. doi:10.1039/C5TC03161C.
[46]J. F. Weaver, H. A. E. Hagelin-Weaver, G. B. Hoflund, G. N. Salaita, Electron energy loss spectra from polycrystalline Cr and Cr2O3 before and after surface reduction by Ar+ bombardment, Appl. Surf. Sci. 252 (2006) 7895–7903. doi:10.1016/j.apsusc.2005.09.059.
[47]R. Brajpuriya, T. Shripathi, Investigation of Fe/Al interface as a function of annealing temperature using XPS, Appl. Surf. Sci. 255 (2009) 6149–6154. doi:10.1016/j.apsusc.2009.01.070.
[48]T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (2008) 2441–2449. doi:10.1016/j.apsusc.2007.09.063.
[49]S. Luo, L. Li, K. F. Wang, S. Z. Li, X. W. Dong, Z. B. Yan, J. M. Liu, Enhanced magnetic and ferroelectric properties of multiferroic CuCrO2 by Ni-doping, Thin Solid Films. 518 (2010) 50–53. doi:10.1016/j.tsf.2010.03.127.
[50]F. Jlaiel, M. Amami, N. Boudjada, P. Strobel, A. Ben Salah, Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2, J. Alloys Compd. 509 (2011) 7784–7788. doi:10.1016/j.jallcom.2011.04.153.
電子全文 電子全文(網際網路公開日期:20210805)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文