跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳韋辰
研究生(外文):Wu Wei Chen
論文名稱:以電漿化學氣相沉積DLC薄膜在氮氧化處理V4E高釩工具鋼之研究
論文名稱(外文):Study on the DLC Films of Oxynitriding-treated V4E High Vanadium Tool Steel by PECVD Process
指導教授:張世賢張世賢引用關係
口試委員:唐自標黃國聰劉沖明張世賢
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:磨耗直流脈衝電漿化學氣相沉積法類鑽碳膜氮氧化處理高釩工具鋼
外文關鍵詞:WearDC-pulsed PECVDDLCOxynitriding TreatmentV4E high vanadium tool steel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
V4E高釩工具鋼具有良好之機械性質,其結合了高耐磨耗性、高韌性及使用時的穩定性,適合應用於冷作工具。另一方面,氮氧化處理後會在表面形成多種氮化物及氧化物,而氧化處理後表面緻密的Fe2O3和Fe3O4氧化膜,可以有效地防止及改善鋼材的抗侵蝕和耐腐蝕性,且氮氧化層不只改善耐磨耗性同時亦可作為中介層以提高附著強度。類鑽碳薄膜擁有優越的性質,例如高硬度、低摩擦係數以及高耐蝕性的,同時利用直流脈衝電漿化學氣相沉積法,可以顯著地改善類鑽碳薄膜的附著性及性質。因此,本研究利用PECVD及氮氧化複合表面處理於V4E高釩工具鋼上,沉積DLC薄膜並探討其特性,以期增加高釩工具鋼之使用壽命。
本實驗使用直流脈衝電漿化學氣相沉積法,以雙極(-15+10%)負脈衝偏壓方式,藉由改變不同的功率密度功率密度(200、400、600及800 mW•cm-2)與CH4氣體流量(5、15、25及35 sccm),沉積類鑽碳薄膜於氮氧化處理後之V4E高釩工具鋼上,接著透過拉曼分析、磨耗測試、刮痕測試、硬度測試、洛式壓痕及腐蝕試驗等,以檢測薄膜之性質。
實驗結果顯示,氮氧化/類鑽碳膜複合表面處理可以成功地在V4E高釩工具鋼上沉積類鑽碳薄膜,其氮氧化層厚度約為27 μm,並可於氮氧化層上沉積厚度約2~4 μm的類鑽碳薄膜。隨著CH4氣體流量增加至35 sccm,使得鍍膜沉積速度增快,DLC厚度急遽地增加到4.4 μm,但反而造成附著性降低。因此,使用非平衡雙極負脈衝偏壓方式,功率密度為400 mW•cm-2、沉積時間90分鐘以及CH4氣體流量為5 sccm時,所沉積之類鑽碳薄膜具有最佳的機械性質;同時此參數的複合表面處理具有最低的磨耗體積損失量(荷重1.96 N及4.9 N之磨耗試驗中,分別為6.23 × 10-3 mm3及1.19 × 10-2 mm3)。而在本研究中,增加DLC厚度可以有效改善耐腐蝕性,當CH4氣體流量增加為35 sccm時,在3.5 wt% NaCl溶液的腐蝕試驗中,其具有最低的腐蝕電流(1.36 × 10-4 A•cm-2)及最高的極化阻抗(5.64 × 102 Ω•cm2)。此結果證實氮氧化/類鑽碳薄膜複合表面處理之V4E高釩工具鋼具有較佳的耐磨耗性和耐腐蝕性。
V4E high vanadium tool steel possesses superior mechanical properties. It combines high wear resistance, high toughness and good stability suitable for cold work tools. On the other hand, oxynitriding treatment can form several kinds of nitrides and oxides. A complex oxide layer, with Fe2O3 and Fe3O4 structures, is formed on the surface, improving the corrosion and erosion properties of the steel. Moreover, the oxynitriding layer not only improves wear resistance but also adhesive strength as an intermediate layer. DLC (diamond-like carbon) films have many excellent properties, such as a high level of hardness, a low friction coefficient and a high corrosion resistance. It can significantly improve the adhesion and properties of DLC films by the DC pulse PECVD (plasma chemical vapor deposition) method. Therefore, our research utilized PECVD and oxynitriding duplex treatment to study the behaviors of DLC films, as well as to increase the tool life of V4E high vanadium tool steel.
In this study, DLC films were prepared by DC-pulsed PECVD after oxynitriding treatment of V4E high vanadium tool steel. The experimental parameters included various power densities (200, 400, 600 and 800 mW•cm-2) and CH4 gas flows (5, 15, 25 and 35 sccm) with an unbalanced bipolar-pulsed voltage (-15+10%). In order to compare the properties of the DLC films for oxynitriding/DLC treated V4E high vanadium tool steel, Raman spectroscopy analysis, wear tests, scratch tests, hardness tests, Rockwell indentation and corrosion resistance inspections were performed.
The experimental results show that 27 μm of oxynitriding layer and 2-4 μm of DLC thin film could be successfully obtained after V4E high vanadium tool steel was treated by the oxynitriding/DLC duplex treatment. As CH4 gas flow increased to 35 sccm, the deposition rate became faster and the DLC thickness was rapidly enhanced to 4.4 μm. However, this obviously resulted in poor adhesion. Consequently, the duplex coating layers had optimal properties when DLC films were treated by a unipolar negative-pulsed voltage and with an appropriate power density (400 mW•cm-2). Meanwhile, the deposition time was 90 min, and the CH4 gas flow was maintained at 5 sccm, respectively. As a result, it possessed the lowest wear volume loss (when the load of 1.96 N and 4.9 N was 6.23 × 10-3 mm3 and 1.19 × 10-2 mm3, respectively). In this study, increasing the DLC thickness effectively improved corrosion resistance. When the CH4 gas flow increased to 35 sccm, it had the lowest corrosion current (Icorr = 1.36 × 10-4 A•cm-2) and highest polarization resistance (Rp = 5.64 × 102 Ω•cm2) in 3.5 wt% NaCl solutions. The study results confirm that optimal wear and corrosion resistance followed the oxynitriding/DLC duplex treatment of V4E high vanadium tool steel.
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
1.3 研究簡介 2
第二章 文獻回顧 3
2.1 高速工具鋼 3
2.1.1 高釩高速鋼 3
2.1.2 散佈強化 4
2.2 表面處理工程 5
2.2.1 滲氮氮化 5
2.2.2 氣體氮氧化(Oxynitiding, ONC®) 8
2.3 DLC薄膜基本特性 9
2.3.1 DLC薄膜的沉積生長模型 12
2.3.2 DLC的熱作用 15
2.3.3 DLC薄膜的摩擦學理論 15
2.3.4 含氫碳磨與磨耗之關係 16
2.4 DLC薄膜製程方法 17
2.5 金屬磨損特徵與機制 20
2.5.1 摩擦學特性的參數意義 22
2.5.2 磨耗表面分析方式 22
2.6 金屬腐蝕基礎理論 23
第三章 實驗方法 29
3.1 實驗流程 29
3.1.1 試片準備及製程參數 30
3.1.1.1 氮氧化(ONC®)表面處理 30
3.1.1.2 脈衝電漿化學氣相沉積法 31
3.1.2 測試與分析 32
3.1.2.1 X-ray繞射分析 33
3.1.2.2 表面硬度量測 33
3.1.2.3 SEM顯微結構及成分分析 34
3.1.2.4 拉曼光譜分析(Raman Spectroscopy Analysis) 35
3.1.2.5 刮痕試驗(Scratch Test) 37
3.1.2.6 壓痕測試 38
3.1.2.7 表面粗糙度測試(Roughness Test) 39
3.1.2.8 磨耗試驗(Wear Test) 40
3.1.2.9 動態電位腐蝕試驗 41
第四章 結果與討論 42
4.1 氮氧化處理 42
4.1.1 XRD分析 42
4.1.2 縱深硬度量測 43
4.1.3 SEM觀察 44
4.2 第一階段-功率密度對DLC薄膜之影響 45
4.2.1 第一階段膜厚分析 45
4.2.2 第一階段拉曼光譜分析 47
4.2.3 第一階段壓痕測試分析 49
4.2.4 第一階段刮痕測試分析 50
4.2.5 第一階段磨耗試驗分析 51
4.2.5.1 不同荷重的磨耗試驗分析 51
4.2.6 第一階段腐蝕試驗分析 57
4.2.7 第一階段功率密度參數小結 59
4.3 第二階段-前驅氣體(CH4)流量對DLC薄膜之影響 60
4.3.1 第二階段膜厚分析 60
4.3.2 第二階段拉曼光譜分析 61
4.3.3 第二階段壓痕測試分析 63
4.3.4 第二階段刮痕測試分析 64
4.3.5 第二階段磨耗試驗分析 65
4.3.6 第二階段腐蝕試驗分析 68
4.3.7 第二階段CH4流量參數小結 70
4.4 第三階段-複合表面處理比較 71
4.4.1 不同表面處理之磨耗試驗分析 71
4.4.2 不同表面處理之腐蝕試驗分析 73
第五章 結論 75
參考文獻 76
[1] 魏世忠、韓明儒、徐流杰,高釩高速鋼耐磨材料,科學出版社,2009,第51-55頁。
[2] 王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制探討,碩士論文,台北科技大學材料與工程研究所,臺北,2015。
[3] 錢苗根、姚壽山、張少宗,現代表面技術,機械工業出版社,2003,第1頁。
[4] 唐殿福、卯石剛、張煥敏,鋼的化學熱處理,遼寧科學技術出版社,2009,第313-358頁。
[5] K. E. Thelnign, Steels and its heat treatment, 2nd edition, 1984, pp. 93-94.
[6] 綱島正一,熱處理技術與實務:中衛發展中心,2003。
[7] A. Alsaran, "Effect of Post-Oxidizing on Tribological and Corrosion Behavior of Plasma Nitrided AISI 5140 Steel," Surface and Coatings Technology, vol. 176, 2004, pp. 344-348.
[8] 鄭國華,鋼鐵材料設計與應用,中國礦冶工程學會及中國鋼鐵股份有限公司,1996,第310頁。
[9] Rishi Sharma, P. K. Barhai, Neelam Kumari, "Corrosion resistant behaviour of DLC films," Thin Solid Films, vol. 516, 2008, pp.5397-5403.
[10] Z. Xu, H. Sun, Y. X. Leng, X. Li, W. Yang and N. Huang, "Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method," Appl. Surface Science, vol. 328, 2015, pp.319-324.
[11] M. P. Siegal, D. R. Tallant and P. N. Provencio, et al., "Ultrahard carbon nanocomposite films," Apply Physics Letter, 76, 2000, pp. 3052.
[12] Lichun Bai, Guangan Zhang, Zhiguo Wu, Jun Wang and Pengxun Yan, "Effect of different ion beam energy on properties of amorphous carbon film fabricated by ion beam sputtering deposition (IBSD)," Nuclear Instruments and Methods in Physics Research B 269, 2011, pp. 1871-1877.
[13] M. Sedlaček, B. Podgornik and J. Vižintin, "Tribological properties of DLC coatings and comparison with test results: Development of a database," Materials Characterization, vol. 59, 2008, pp. 151-161.
[14] J. Robertson, "Diamond-like amorphous carbon," Materials Science and Engineering R 37, 2002, pp. 129-281.
[15] 黃麒榕,以直流脈衝電漿化學氣相沉積法於不同工作週期及功率密度下蒸鍍DLC薄膜於氮氧化處理ASP60高速鋼之研究,碩士論文,台北科技大學材料科學與工程研究所,臺北,2015。
[16] Erdemir and C. Donne, "Tribology of diamond-like carbon films: recent progress and future prospects," Journal of Physics D: Applied Physics, vol. 39, 2006, pp. R311-R327.
[17] Erdemir, "The role of hydrogen in tribological properties of diamond-like carbon Films," Surface and Coatings Technology, vol. 146-147, 2001, pp. 292-297.
[18] Liu H, Tanka A and Umeda K. The tribological characteristics of diamond-like carbon films at elevated temperatures, Thin Solid Films, 346, 1999, pp.781-791.
[19] Kirsten Bobzin, Nazlim Bagcivan, Sebastian Theiss and Koray Yilmaz, "Hydrogen content variation for enhancing the lubricated tribological performance of DLC coatings with ester," Surface and Coatings Technology, vol. 205, 2011, pp. 89-93.
[20] P. K. Chu and L. Li, "Characterization of amorphous and nanocrystalline carbon films," Materials Chemistry and Physics, vol. 96, 2006, pp. 253-277.
[21] W. Tillmann, E. Vogli and F. Hoffmann, "Wear-resistant and low-friction diamond-like-carbon (DLC)-layers for industrial tribological applications under humid conditions," Surface and Coatings Technology, vol. 204, 2009, pp. 1040-1045.
[22] Lichun Baia, Narasimalu Srikantha, Hong Wub, Feng Liub, Bo Liuc, Kun Zhouc,, " Effect of environmental hydrogen atoms on the tribological behaviors of diamond-like carbon films," Tribology International, vol. 99, 2016, pp.258-266
[23] S. Aisenberg and R. Chabot, "Deposition of carbon films with diamond properties," Carbon, vol. 10, 1972, pp. 356.
[24] 溫詩鑄、黃平,摩擦學原理(第三版),北京:清華大學出版社,2008,第258-287頁。
[25] 張永振,材料的乾摩擦學,北京:科學出版社,2007,第313-316頁。
[26] 熊楚強、王月,電化學,新北市;新文京開發,2004,第399-421頁。
[27] 余鈞正,不同功率密度對直流脈衝電漿化學氣相沉積法蒸鍍DLC薄膜於氮氧化處理JIS SKD11工具鋼之研究,碩士論文,台北科技大學材料科學與工程研究所,臺北,2014。
[28] D. A. Jones, Principles and Prevention of Corrosion, New York: Prentice-Hall, 1996, pp. 116-167.
[29]ASTM, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, Designation: G99-03
[30] L. Xia, M. Sun and J. Liao, "The effect of negative bias pulse on the bonding configurations and properties of DLC films prepared by PBII with acetylene," Diamond and Related Materials, vol. 14, 2005, pp. 42-47.
[31] E. P. OReilly, J. Robertson and D. Beeman, "Electronic structure of amorphous carbon," Journal of Non-Crystalline Solids, vol. 77-78, 1985, pp. 83-86.
[32] Richter, H. J. Scheibe, W. Pompe, K. W. Brzezinka and I. Muhling, "About the structure and bonding of laser generated carbon films by Raman and electron energy loss spectroscopy," Journal of Non-Crystalline Solids, vol. 88, 1986, pp. 131-144.
[33] N. Vidakis, A. Antoniadis and N. Bilalis, "The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds," Journal of Materials Processing Technology, vol. 143-144, 2003, pp. 481-485.
[34] 伍秀菁、汪若文,奈米檢測技術,新竹市:全華出版社,2009,第552-560頁。
[35] Junho Choi, Keisuke Ishii, Takahisa Kato, Masahiro Kawaguchi and Wonsik Lee, "Structural and mechanical properties of DLC films prepared by bipolar PBII&D," Diamond & Related Materials, vol. 20, 2011, pp. 845-848.
[36] Neeraj Dwivedi, Sushil Kumar, Ishpal Rawal and Hitendra K. Malik , "Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films," Applied Surface Science, vol. 300, 2014, pp. 141-148.
[37] Andrea Carlo Ferrari, "Determination of bonding in diamond-like carbon by Raman spectroscopy," Diamond and Related Materials, vol. 11, 2002, pp. 1053-1061.
[38] A. C. Ferrari and J. Robertson, "Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon, " Physical Review B, vol. 64, 2001, pp. 1-13.
[39] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon, "Physical Review B, vol. 61, 1999, pp. 95-107.
[40] A. C. Ferrari, B. Kleinsorge, N. A. Morrison, A. Hart, V. Stolojan and J. Robertson, "Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon," Journal of Applied Physics, vol. 85, 1999, pp. 7191-7197.
[41] 薛群基、王立平等,類金剛石碳基薄膜材料,北京:科學出版社,2012。
[42] K. Holmberg, H. Ronkainen, A. Laukkanen and K. Wallin, "Friction and wear of coated surfaces-scales, modelling and simulation of tribomechanisms," Surface & Coatings Technology, vol. 202, 2007, pp. 1034-1049.
[43] Eugenia L. Dalibon, Vladimir Trava-Airoldi, Lânia A. Pereira, Amado Cabo and Sonia P. Brühl, "Wear resistance of nitrided and DLC coated PH stainless steel," Surface & Coatings Technology, vol. 255, 2014, pp. 22-27.
[44] G. Capote, E.J. Corat and V.J. Trava-Airoldi, "Deposition of amorphous hydrogenated carbon films on steel surfaces through the enhanced asymmetrical modified bipolar pulsed-DC PECVD method, " Surface & Coatings Technology, vol. 260, 2014, pp. 133-138.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊