跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王心慈
研究生(外文):Hsin-Tzu Wang
論文名稱:真空燒結法對添加不同碳化物之鈦鉬鉻 合金之微觀組織與強化機制探討
論文名稱(外文):Study on Microstructure and Strengthening Mechanisms of Various Carbides Added to Ti-Mo-Cr Alloy via Vacuum Sintering Process
指導教授:張世賢張世賢引用關係
指導教授(外文):Shih-Hsien Chang
口試委員:劉沖明黃國聰唐自標
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:鈦合金、金屬基複合材料、Ti-Mo-Cr合金、真空燒結、碳化鈮、碳化鋯
外文關鍵詞:Titanium AlloysPowder MetallurgyTi- Mo-Cr AlloysVacuum SinteringNbC and ZrC
相關次數:
  • 被引用被引用:4
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金發展至今已有200餘年的歷史,其中以粉末冶金製作鈦及鈦基合金的研究,更已經超過50年,相較於其它金屬,鈦及鈦合金,提供了比強度高、密度低及良好的疲勞強度。以鈦合金取代鐵基合金重量時,可減少並提升機械特性,鈦合金也有良好耐腐蝕性,且與人類骨骼具有高度生物相容性,這些特性使得鈦合金成為人體植入物的最佳選擇。此外,金屬基複合材料(MMCs)已知具有相當優越的機械性質,許多相關的研究會在鈦基材料上添加MC型碳化物,來作為鈦基合金之強化介質以提升其性質。
本實驗利用三種金屬粉末進行混合,分別為鈦、鉬及鉻粉,配置成三種不同合金,其三種配比分別為:Ti-8Mo-4Cr、Ti-8Mo-6Cr與Ti-8Mo-8Cr,並將鈦鉬鉻合金於1200°C、1250°C、1275°C與1300°C四種溫度下,持溫一小時進行真空燒結。為了要評估鈦鉬鉻合金經過真空燒結後的微觀結構與機械性質,本研究利用測量視孔隙率、硬度、橫向破裂強度(TRS)以及X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)與光學顯微鏡(OM)等,來檢測鈦鉬鉻合金之性質。最後,進一步選擇Ti-Mo-Cr合金最佳的燒結參數,並添加碳化鈮(NbC)及碳化鋯(ZrC)等碳化物作為強化相來改善其機械性質。
實驗結果顯示,Ti-8Mo-6Cr合金於1300°C燒結一小時下,可獲得最高的硬度(66.5 HRA)、良好的視孔隙率(0.10 %)與橫向破裂強度(1152.9 MPa),因此本研究將選用Ti-8Mo-6Cr添加碳化鈮與碳化鋯,做進一步的改善與分析。研究結果則顯示,添加1 wt% NbC碳化物的Ti-8Mo-6Cr合金,於1250°C燒結一小時後,具有最佳的性質,其硬度可以達到64.0 HRA,且橫向破裂強度明顯地增加至1522.0 MPa,同時極化阻抗高達3602.83 Ω·cm2,可以有效地改善其耐腐蝕性。添加5 wt%碳化鋯於1275°C燒結後,有較佳的視孔隙率(0.09%)、較高的硬度(66.4 HRA),以及最高之極化阻抗值(11815.0 Ω·cm2)。
Titanium alloys have been developed over 200 years, whereas the powder metallurgy of titanium and Ti-based alloys has only been researched the last 50 years. Actually, titanium and its alloys offer high strength-to-weight ratios, low density and good fatigue strength compared with other materials. Moreover, they provide a potential for weight reduction and performance improvements when substituting ferrous-based alloys. The chemical properties of titanium alloys include good resistance to corrosion, good antiseptic properties and high biocompatibility with humans. These properties make titanium alloys a common choice for biomaterial implanted in the human body. In addition, the metal matrix composites (MMC) are well known for their excellent mechanical properties. Many investigations have depended on the characteristic of carbide as a reinforcing medium in a Ti-based alloy in order to enhance performance.
In this study, three different powders (titanium, molybdenum and chromium) were mixed and used to produce Ti-Mo-Cr alloys of three different proportions: Ti-8Mo-4Cr, Ti-8Mo-6Cr and Ti-8Mo-8Cr. The Ti-Mo-Cr alloys underwent a vacuum sintering process at various sintering temperatures of 1200°C, 1250°C, 1275°C and 1300°C for 1 h, respectively. To assess the microstructural and mechanical properties of the Ti-Mo-Cr alloys through the vacuum sintering processes, tests on the apparent porosity, hardness and transverse rupture strength (TRS) and microstructure inspections were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), with the purpose of improving the microstructure and properties of sintered Ti-Mo-Cr alloys. Finally, the optimal sintered parameters were subjected to the addition of various carbides (NbC and ZrC) as a strengthening phase after the sintering process.
The experimental results show that the highest hardness (66.45 HRA), good apparent porosity (0.10%) and transverse rupture strength (1112.87 MPa) of Ti-8Mo-6Cr alloys were obtained after sintering at 1300°C for 1 h. As a result, this study utilized the Ti-8Mo-6Cr alloys with the addition of niobium carbide and zirconium carbide for further improvement and analysis. The test results also indicated that when 1 wt% NbC carbide was added to Ti-8Mo-6Cr alloys, the possessed optimal properties after sintering at 1250°C for 1 h. The hardness was approached to 64.01 HRA, and the transverse rupture strength obviously increased to 1521.98 MPa, respectively. Meanwhile, the polarization resistance achieved 3602.83 Ω·cm2 which led to effectively improving corrosion resistance. When 5 wt% ZrC carbide was added to Ti-8Mo-6Cr alloys, the possessed optimal properties after sintering at 1275°C for 1 h. The preferable apparent porosity 0.09%, The hardness was enhanced to 66.40 HRA, and the polarization resistance achieved 11815.00 Ω·cm2.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧與基礎理論 3
2.1 鈦合金的由來與發展 3
2.1.1 鈦的由來 3
2.1.2 鈦及鈦合金的物理性質 4
2.1.3 鈦及鈦合金的應用 6
2.2 鈦合金的性質 8
2.2.1 α鈦合金與近α鈦合金 11
2.2.2 α+β鈦合金 12
2.2.3 β鈦合金與近β鈦合金 12
2.3 強化機制 15
2.3.1 固溶強化 15
2.3.2 散佈強化 18
2.4 破斷面分析 21
2.4.1 鈦合金破斷面理論 22
2.5 鈦合金的腐蝕行為 24
2.5.1 腐蝕形態 24
2.6 腐蝕特性 25
2.7 粉末冶金簡介 26
2.7.1 基本製成 26
2.7.2 粉末冶金產品之特點[33] 26
2.7.3 燒結原理 27
第三章 實驗流程、設備與分析方法 29
3.1 實驗流程 29
3.1.1 原料粉末 30
3.1.2 粉末混合 31
3.1.3 成形 32
3.1.4 真空燒結 33
3.2 分析方法 34
3.2.1 雷射粒徑 35
3.2.2 X-ray繞射 35
3.2.3 光學顯微鏡 36
3.2.4 掃描式電子顯微鏡 36
3.2.5 收縮率與視孔隙率 37
3.2.6 硬度 39
3.2.7 橫向破裂強度 39
3.2.8 動態電位極化試驗 41
第四章 結果與討論 42
4.1 粉末粒徑分析 42
4.1.1 原始基材粉末 43
4.1.2 強化相粉末 43
4.2 混合後粉末分析 44
4.2.1 混合後粉末之成份分析 45
4.2.2 強化相添加後粉末之成份分析 46
4.3 鈦鉬鉻合金性質 49
4.3.1 X-ray繞射分析 49
4.3.2 金相以及顯微組織 53
4.3.3 燒結緻密度檢測 61
4.4 機械性質 63
4.4.1 硬度 63
4.4.2 橫向破裂強度 64
4.4.3 破斷面分析 66
4.4.4 Ti-8Mo-xCr在不同燒結溫度下之小結 68
4.5 碳化物添加後之合金性質 70
4.5.1 碳化物添加後X-ray繞射分析 70
4.5.2 碳化物添加後金相以及顯微組織 75
4.5.3 碳化物添加後燒結緻密度檢測 84
4.6 碳化物添加後之機械性質 88
4.6.1 碳化物添加後之硬度 89
4.6.2 碳化物添加後之橫向破裂強度 91
4.6.3 碳化物添加後之破斷面分析 93
4.7 碳化物添加後之極化腐蝕特性 98
第五章 結論 100
參考文獻 101
[1]D. R. Santos, M. D. S. Pereira, C. A. A. Cairo, M. L. A. Graça and V. A. R. Henriques, "Isochronal sintering of the blended elemental Ti-35Nb alloy," Materials Science and Engineering: A, vol. 472, no. 1, 2008, pp. 193-197.
[2]V. A. R. Hemriques, C. E. Bellinati and C. R. M. Silva, "Production of Ti-6%Al-7%Nb alloy by powder metallurgy," Journal of Materials Processing Technology, vol. 118, Issues 1-3, 2001, pp. 212-215.
[3]B. Q. Li, F Yan and X. Lu, "Effect of microstructure on the tensile property of porous Ti produced by powder metallurgy technique," Materials Science and Engineering: A, vol. 534, 2012, pp. 43-52.
[4]周連在,鈦材料及其應用,台灣:冶金工業出版社,2008。
[5]洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,高雄,2103,第12-22頁。
[6]H. S. Luo, The Engineering ToolBox, United States of America, PHI Learning Pvt. Ltd. 2012, pp 4-7
[7]E. Delvat, D. M. Gordin, T. Gloriant, J. L. Duval and M. D. Nagel, "Microstructure, mechanical properties and cytocompatibility of stable beta Ti–Mo–Ta sintered alloys," Journal of the mechanical behavior of biomedical materials, vol. 1, no. 4, 2008, pp. 345-351.
[8]D. R. N, Correa, F. B. Vicente, R. O. Araújo, M. L. Lourenço, P. A. B. Kuroda, M. A. R. Buzalaf and C. R. Grandini," Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys," Journal of Materials Research and Technology, vol. 4, no. 2, 2015, pp. 180-185.
[9]Z. Gao, Q. Li, F. He, Y. Huang and Y. Wan, "Mechanical modulation and bioactive surface modification of porous Ti–10Mo alloy for bone implants," Materials and Design, vol. 42, 2012, pp. 13-20.
[10]W. F. Ho, S. C. Wu, S. K. Hsu, L. S. Fang and H.C. Hsu, "Bond strength of Ti–5Cr based alloys to dental porcelain with Mo addition," Materials and Design, vol. 43, 2013, pp. 233-236.
[11]蘇建榮,針對不同表面處理之鈦合金骨螺絲作生物親和性的評估,碩士論文,成功大學醫學工程所,臺南,2002。
[12]J. T. Tsai, C. Y. Han, C. Liang and S. T. Lin, "Microstructure and Properties of Ti-8Mo-12Fe and Ti-8Mo-8Cu alloys with Cr3C2 Additives Produced in the Powder Metallurgy Processes," Procedia Engineering, vol. 36, 2012, pp. 368-373.
[13]杭州德灵电子商务有限公司,工程材料,中国气体分离设备商务网,2001年,九章四節。
[14]L. L. Li and Y. W. Sun, "Experimental Investigation on Surface Integrity in Grinding Titanium Alloys with Small Vitrified CBN Wheel," Applied Mechanics and Materials, vol. 117-119, 2012, pp. 1483-1490.
[15]Z. Yan, F. Chen, Y. Cai, J. Yin and Y. Zheng "Preparation and properties of Ti–4.5Al–6.8Mo–1.5Fe alloy by high-velocity compaction," Powder technology, vol. 246, 2013, pp. 345-350.
[16]V. A. Joshi, Titanium Alloys: An Atlas of Structures and Fracture Features, United States of America, Taylor & Francis Group, 2006, pp. 11-14.
[17]Abdel-Hady, Mohamed, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato and M. Morinaga, "Phase stability change with Zr content in β-type Ti–Nb alloys," Scripta Materialia, vol. 57, no. 11, 2007, pp. 1000-1003.
[18]Abdel-Hady, Mohamed, K. Hinoshita, and M. Morinaga, "General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters," Scripta Materialia, vol. 55, no. 5, 2006, pp. 477-480.
[19]C. Leyens, M. Peers, Titanium and Titanium Alloys: Fundamentals and Applications, Germany, betz-druck GmbH, Darmstadt, 2003, pp. 9-12.t
[20]S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, "Enhancing the Ductility of Mg-(5.6 Ti+ 3Al) Composite Using Nano-B4C Addition and Heat Treatment." SOJ Materials Science & Engineering, vol. 1, no. 1, 2013, pp.38-42.
[21]侯文星,滲氫處理及溫間塑性加工製程對Ti-6Al-4V α相晶粒細化及加工特性影響之研究,碩士論文,雲林科技大學機械工程所,雲林,2004。
[22]M. J. Donachie, Titanium: A Technical Guide, 2nd Edition, United States of America, ASM International®, 2000, pp. 22.
[23]S. Saroja, M. Vijayalakshmi and Baldev Raj, "Ti–5Ta–1.8Nb: An Advanced Structural Material for High Performance Application in Aggressive Oxidising Environments," Transactions of the Indian Institute of Metals, vol. 65, 2012, pp. 111-133.
[24]Helmut Föll, Defects in Crystals, University of Kiel, Germany, 2009, pp. 4-6.
[25]V.A. Jr and C.R. Grandini, Titanium Alloys An Atlas of Structuers and Fracture Features, Talor & Francis Group, 2006, pp. 1-205.
[26]王昆林,材料工程基礎,中國:清華大學出版社有限公司,2003,第3-15頁。
[27]鈴木壽,超硬合金と焼結硬質材料—基礎と応用,丸善,1986,第62-63頁。
[28]R.W. K. Honeycombe, H. K. D. Hansraj Bhadeshia, Steels-Microstructure and properties, 中國:五南圖書出版股份有限公司, 2004,第284-286頁。
[29]ASM International. Handbook Committee, ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Asm International, 1990, pp. 1770-1946.
[30]王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制探討,碩士論文,台北科技大學材料科學與工程研究所,台北,2015。
[31]林峻丞,真空燒結法對鈦銅鉬合金添加不同碳化物之顯微組織與強化機制探討,碩士論文,台北科技大學材料科學與工程研究所,台北,2013。
[32]W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller and K. Akhtar, "Cold compaction study of Armstrong Process® Ti–6Al–4V powders," Powder Technology, vol. 214, 2011, pp. 194-199.
[33]黃坤祥,粉末冶金學,台灣:中華民國粉末冶金協會,2001年,第1頁。
[34]J. G. Yoo and Y. M. Jo, "Finding the optimum binder for fly ash pelletization," Fuel Processing Technology, vol. 81, 2003, pp. 173-186
[35]梁誠、張世賢,「熱均壓強化之完全緻密型粉末冶金零件」,粉末冶金會刊,第二十七卷,第四期,2002,第261-270頁。
[36]黃中人,真空熱壓燒結製程應用於奈米鉻銅靶材其成形機構、顯微結構及特性之研究,碩士論文,台北科技大學材料科學與工程研究所,台北,2012。
[37]G. Lutjering and J.C. Williams, Titanium, United States of America, Springer-Verlag, pp. 137-138.
[38]X. Zhao, M. Niinomi, M. Nakai and J. Hieda, "Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications," Acta Biomaterialia, vol. 8, 2012, pp. 1990-1997.
[39]C. Zhao, X. Zhang and P. Cao, "Mechanical and electrochemical characterization of Ti–12Mo–5Zr alloy for biomedical application," Journal of Alloys and Compounds, vol. 509, no. 32, 2011, pp. 8235-8238
[40]J. Jia, K. Zhang and S. Jiang, "Microstructure and mechanical properties of Ti–22Al–25Nb alloy fabricated by vacuum hot pressing sintering," Materials Science and Engineering: A, Vol. 616, 2014, pp.93-98.
[41]A Takeuchi and A. Inoue, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, 2005, pp. 2817-2829.
[42]A. Mitchell, A. Schmalz, C. Schvezov, and S. Cockroft, "The precipitation of primary Carbides in Alloy 718," Superalloys 718, 625 and various derivatives, vol. 79, 1994, pp. 65-78.
[43]R. Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 352-355.
[44]E. A. Levashov, V. V. Kurbatkina, A. A. Zaitsev, S. I. Rupasov, E. I. Patsera, A. A. Chernyshev, Ya. V. Zubavichus and A. A. Veligzhanin," Structure and Properties of Precipitation_Hardening Ceramic Ti-Zr-C and Ti-Ta-C Materials," The Physics of Metals and Metallography, vol. 109, no. 1, 2010, pp. 95-105.
[45]A. Ota, H. Egawa and H. Izui, "Mechanical properties and wear resistances of TiC or B4C reinforced Ti-6Al-4V prepared by spark plasma sintering," Materials Science Forum, vol. 706-709, 2012, pp. 222-227.
[46]H. Choe, S. Abkowitz, S. M. Abkowitz and D. C. Dunand, "Mechanical properties of Ti–W alloys reinforced with TiC particles," Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.
[47]郭呈周、焦志鵬,航空用特殊材料加工技術,崧博出版事業有限公司,台灣,2011,第48-52頁。
[48]李華志,數控加工工藝與裝備,清華大學出版社,北京,2005,第32-35頁。
[49]Toshiya Yamaguchi, Hiroyuki Morishita, Satoru Iwase, Sigeki Yamada, Tadahiko Furuta and Takashi Saito, "Development of P/M Titanium Engine Valves," SAE 2000 World Congress, Detroit, Michigan, United States, no. 200-01-0905, 2000, pp. 1-9.
[50]Heeman Choe, Susan Abkowitz, Stanley M. Abkowitz and David C. Dunand, "Mechanical properties of Ti–W alloys reinforced with TiC particles," Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊