[1]D. R. Santos, M. D. S. Pereira, C. A. A. Cairo, M. L. A. Graça and V. A. R. Henriques, "Isochronal sintering of the blended elemental Ti-35Nb alloy," Materials Science and Engineering: A, vol. 472, no. 1, 2008, pp. 193-197.
[2]V. A. R. Hemriques, C. E. Bellinati and C. R. M. Silva, "Production of Ti-6%Al-7%Nb alloy by powder metallurgy," Journal of Materials Processing Technology, vol. 118, Issues 1-3, 2001, pp. 212-215.
[3]B. Q. Li, F Yan and X. Lu, "Effect of microstructure on the tensile property of porous Ti produced by powder metallurgy technique," Materials Science and Engineering: A, vol. 534, 2012, pp. 43-52.
[4]周連在,鈦材料及其應用,台灣:冶金工業出版社,2008。
[5]洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,高雄,2103,第12-22頁。
[6]H. S. Luo, The Engineering ToolBox, United States of America, PHI Learning Pvt. Ltd. 2012, pp 4-7
[7]E. Delvat, D. M. Gordin, T. Gloriant, J. L. Duval and M. D. Nagel, "Microstructure, mechanical properties and cytocompatibility of stable beta Ti–Mo–Ta sintered alloys," Journal of the mechanical behavior of biomedical materials, vol. 1, no. 4, 2008, pp. 345-351.
[8]D. R. N, Correa, F. B. Vicente, R. O. Araújo, M. L. Lourenço, P. A. B. Kuroda, M. A. R. Buzalaf and C. R. Grandini," Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys," Journal of Materials Research and Technology, vol. 4, no. 2, 2015, pp. 180-185.
[9]Z. Gao, Q. Li, F. He, Y. Huang and Y. Wan, "Mechanical modulation and bioactive surface modification of porous Ti–10Mo alloy for bone implants," Materials and Design, vol. 42, 2012, pp. 13-20.
[10]W. F. Ho, S. C. Wu, S. K. Hsu, L. S. Fang and H.C. Hsu, "Bond strength of Ti–5Cr based alloys to dental porcelain with Mo addition," Materials and Design, vol. 43, 2013, pp. 233-236.
[11]蘇建榮,針對不同表面處理之鈦合金骨螺絲作生物親和性的評估,碩士論文,成功大學醫學工程所,臺南,2002。[12]J. T. Tsai, C. Y. Han, C. Liang and S. T. Lin, "Microstructure and Properties of Ti-8Mo-12Fe and Ti-8Mo-8Cu alloys with Cr3C2 Additives Produced in the Powder Metallurgy Processes," Procedia Engineering, vol. 36, 2012, pp. 368-373.
[13]杭州德灵电子商务有限公司,工程材料,中国气体分离设备商务网,2001年,九章四節。
[14]L. L. Li and Y. W. Sun, "Experimental Investigation on Surface Integrity in Grinding Titanium Alloys with Small Vitrified CBN Wheel," Applied Mechanics and Materials, vol. 117-119, 2012, pp. 1483-1490.
[15]Z. Yan, F. Chen, Y. Cai, J. Yin and Y. Zheng "Preparation and properties of Ti–4.5Al–6.8Mo–1.5Fe alloy by high-velocity compaction," Powder technology, vol. 246, 2013, pp. 345-350.
[16]V. A. Joshi, Titanium Alloys: An Atlas of Structures and Fracture Features, United States of America, Taylor & Francis Group, 2006, pp. 11-14.
[17]Abdel-Hady, Mohamed, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato and M. Morinaga, "Phase stability change with Zr content in β-type Ti–Nb alloys," Scripta Materialia, vol. 57, no. 11, 2007, pp. 1000-1003.
[18]Abdel-Hady, Mohamed, K. Hinoshita, and M. Morinaga, "General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters," Scripta Materialia, vol. 55, no. 5, 2006, pp. 477-480.
[19]C. Leyens, M. Peers, Titanium and Titanium Alloys: Fundamentals and Applications, Germany, betz-druck GmbH, Darmstadt, 2003, pp. 9-12.t
[20]S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, "Enhancing the Ductility of Mg-(5.6 Ti+ 3Al) Composite Using Nano-B4C Addition and Heat Treatment." SOJ Materials Science & Engineering, vol. 1, no. 1, 2013, pp.38-42.
[21]侯文星,滲氫處理及溫間塑性加工製程對Ti-6Al-4V α相晶粒細化及加工特性影響之研究,碩士論文,雲林科技大學機械工程所,雲林,2004。[22]M. J. Donachie, Titanium: A Technical Guide, 2nd Edition, United States of America, ASM International®, 2000, pp. 22.
[23]S. Saroja, M. Vijayalakshmi and Baldev Raj, "Ti–5Ta–1.8Nb: An Advanced Structural Material for High Performance Application in Aggressive Oxidising Environments," Transactions of the Indian Institute of Metals, vol. 65, 2012, pp. 111-133.
[24]Helmut Föll, Defects in Crystals, University of Kiel, Germany, 2009, pp. 4-6.
[25]V.A. Jr and C.R. Grandini, Titanium Alloys An Atlas of Structuers and Fracture Features, Talor & Francis Group, 2006, pp. 1-205.
[26]王昆林,材料工程基礎,中國:清華大學出版社有限公司,2003,第3-15頁。
[27]鈴木壽,超硬合金と焼結硬質材料—基礎と応用,丸善,1986,第62-63頁。
[28]R.W. K. Honeycombe, H. K. D. Hansraj Bhadeshia, Steels-Microstructure and properties, 中國:五南圖書出版股份有限公司, 2004,第284-286頁。
[29]ASM International. Handbook Committee, ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Asm International, 1990, pp. 1770-1946.
[30]王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制探討,碩士論文,台北科技大學材料科學與工程研究所,台北,2015。[31]林峻丞,真空燒結法對鈦銅鉬合金添加不同碳化物之顯微組織與強化機制探討,碩士論文,台北科技大學材料科學與工程研究所,台北,2013。[32]W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller and K. Akhtar, "Cold compaction study of Armstrong Process® Ti–6Al–4V powders," Powder Technology, vol. 214, 2011, pp. 194-199.
[33]黃坤祥,粉末冶金學,台灣:中華民國粉末冶金協會,2001年,第1頁。
[34]J. G. Yoo and Y. M. Jo, "Finding the optimum binder for fly ash pelletization," Fuel Processing Technology, vol. 81, 2003, pp. 173-186
[35]梁誠、張世賢,「熱均壓強化之完全緻密型粉末冶金零件」,粉末冶金會刊,第二十七卷,第四期,2002,第261-270頁。
[36]黃中人,真空熱壓燒結製程應用於奈米鉻銅靶材其成形機構、顯微結構及特性之研究,碩士論文,台北科技大學材料科學與工程研究所,台北,2012。[37]G. Lutjering and J.C. Williams, Titanium, United States of America, Springer-Verlag, pp. 137-138.
[38]X. Zhao, M. Niinomi, M. Nakai and J. Hieda, "Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications," Acta Biomaterialia, vol. 8, 2012, pp. 1990-1997.
[39]C. Zhao, X. Zhang and P. Cao, "Mechanical and electrochemical characterization of Ti–12Mo–5Zr alloy for biomedical application," Journal of Alloys and Compounds, vol. 509, no. 32, 2011, pp. 8235-8238
[40]J. Jia, K. Zhang and S. Jiang, "Microstructure and mechanical properties of Ti–22Al–25Nb alloy fabricated by vacuum hot pressing sintering," Materials Science and Engineering: A, Vol. 616, 2014, pp.93-98.
[41]A Takeuchi and A. Inoue, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, 2005, pp. 2817-2829.
[42]A. Mitchell, A. Schmalz, C. Schvezov, and S. Cockroft, "The precipitation of primary Carbides in Alloy 718," Superalloys 718, 625 and various derivatives, vol. 79, 1994, pp. 65-78.
[43]R. Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 352-355.
[44]E. A. Levashov, V. V. Kurbatkina, A. A. Zaitsev, S. I. Rupasov, E. I. Patsera, A. A. Chernyshev, Ya. V. Zubavichus and A. A. Veligzhanin," Structure and Properties of Precipitation_Hardening Ceramic Ti-Zr-C and Ti-Ta-C Materials," The Physics of Metals and Metallography, vol. 109, no. 1, 2010, pp. 95-105.
[45]A. Ota, H. Egawa and H. Izui, "Mechanical properties and wear resistances of TiC or B4C reinforced Ti-6Al-4V prepared by spark plasma sintering," Materials Science Forum, vol. 706-709, 2012, pp. 222-227.
[46]H. Choe, S. Abkowitz, S. M. Abkowitz and D. C. Dunand, "Mechanical properties of Ti–W alloys reinforced with TiC particles," Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.
[47]郭呈周、焦志鵬,航空用特殊材料加工技術,崧博出版事業有限公司,台灣,2011,第48-52頁。
[48]李華志,數控加工工藝與裝備,清華大學出版社,北京,2005,第32-35頁。
[49]Toshiya Yamaguchi, Hiroyuki Morishita, Satoru Iwase, Sigeki Yamada, Tadahiko Furuta and Takashi Saito, "Development of P/M Titanium Engine Valves," SAE 2000 World Congress, Detroit, Michigan, United States, no. 200-01-0905, 2000, pp. 1-9.
[50]Heeman Choe, Susan Abkowitz, Stanley M. Abkowitz and David C. Dunand, "Mechanical properties of Ti–W alloys reinforced with TiC particles," Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.