(3.236.214.19) 您好!臺灣時間:2021/05/10 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王伯記
研究生(外文):Po-Chi Wang
論文名稱:含鎢四元金屬玻璃薄膜之開發與生物相容性之研究
論文名稱(外文):development and biocompatibility of W-containing quaternary thin film metallic glasses
指導教授:楊永欽楊永欽引用關係
口試委員:鄭憲清朱瑾李志偉
口試日期:2016-06-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:Zr-Ti-Si-W、金屬玻璃薄膜、奈米壓痕儀、動電位極化腐蝕試驗、生物相容性
外文關鍵詞:Zr-Ti-Si-Wthin film metallic glassesNanoindentationPotentiodynamic polarization testbiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,薄膜科技已廣泛地應用在各領域上。由於塊狀金屬玻璃具有獨特的機械性質,但在成本的考量上以及為了廣泛的運用,所以將塊狀金屬玻璃薄膜化,因此金屬玻璃薄膜近年開始被學術界廣泛研究。本研究第一階段以脈衝磁控濺鍍系統在矽晶片和316L不銹鋼表面鍍製Zr-Ti-Si-W金屬玻璃薄膜。但由於第一階段部分參數氧含量偏高,所以再鍍製第二階段Zr基金屬玻璃薄膜時會將Zr含量提高,第三階段則提高Ti的瓦數,降低Zr的瓦數形成Ti-Zr-Si-W金屬玻璃薄膜。比較矽含量對於Zr基和Ti基金屬玻璃薄膜結構與機械性質以及生物相容性之影響。本研究各薄膜成份皆由場發射電子微探分析儀確認,利用X光繞射儀確認薄膜之非晶結構,並使用場發掃描式電子顯微鏡觀察薄膜的表面與截面之顯微結構。接著再利用奈米壓痕儀來測量薄膜材料的硬度、彈性係數及H/E,再藉由HRC-DB附著測試各薄膜的附著能力,原子力顯微鏡探討薄膜的表面粗糙度。本研究中Zr-Ti-Si-W、Zr-Ti-W-Si、Ti-Zr-W-Si薄膜均呈現非晶質之特性;矽含量的增加確實能提升金屬玻璃薄膜之硬度;Zr-Ti-Si-W金屬玻璃薄膜截面呈現柱狀結構而Zr-Ti-W-Si及Ti-Zr-W-Si金屬玻璃薄膜截面為細小而緊密之結構。金屬玻璃薄膜在動電位極化腐蝕試驗中均顯示其抗腐蝕能力比醫療級SS316不銹鋼優異;實驗所鍍製之金屬玻璃薄膜均具有優異的附著性,其薄膜的附著性品質為HF1與HF2等級。各薄膜進行MG-63骨瘤細胞培養,並且使用 MTS assay分析細胞活性,從細胞生長情況判斷其生物相容性。綜合以上結論,本研究之含鎢之鋯基和鈦基金屬玻璃薄膜具有相當大的應用潛力。
Recently, the thin film technology has been widely applied in various fields. The bulk metallic glass has unique mechanical properties, but in terms of cost considerations and in order to widely used, so thin film metallic glass has been extensively studied in recent years began from academia which make bulk metallic glass thin film into thin film form. In this work, a series of W-contained thin film metallic glasses (TFMGs) were prepared by a magnetron co-sputtering system. In the first stage, the effects of silicon content on the microstructure and mechanical properties of Zr-Ti-Si-W TFMGs were discussion. But a part of parameter oxygen content is too high in first stage, coating Zr-based and increase Zr content in second stage. In the third stage, the Zr-based was used to replace Ti-based. The denser Ti-Zr-W-Si TFMGs were studied. The amorphous structures of coatings were determined by a glancing angle X-ray diffractometer. The surface and cross sectional morphologies of thin films were examined by a scanning electron microscopy (SEM). The surface roughness of thin films was explored by an atomic force microscopy (AFM). A nanoindenter, HRC-DB adhesion test were used to evaluate the hardness and adhesion properties of thin films, respectively. In addition, the anti-corrosion properties of TFMGs were evaluated by the potentiodynamic polarization tests in 5.0 wt. %NaCl aqueous solution. In this work, the Zr-Ti-Si-W, Zr-Ti-W-Si and Ti-Zr-W-Si TFMGs all showed amorphous structure. An increase in silicon content to effectively improve the hardness of the Zr-based and Ti-based TFMGs. The Zr-Ti-Si-W TFMGs exhibited a columnar structures, while the Zr-Ti-W-Si and Ti-Zr-W-Si TFMGs were dense and fine structures in the cross-sectional images. In this research, the corrosion tests showed that all TFMGs had excellent corrosion resistance than 316L biomedical grade stainless steel. All of TFMGs provide an excellent adhesion and the adhesion quality was around HF1 to HF2 level. The biocompatibility of the TFMGs was examined using MG63 cell and the MTS assay.. Based on the above conclusions, the newly developed W-content Zr-based and Ti-based thin film metal glasses have considerable potential to be applied.
摘要 i
ABSTRACT iii
誌 謝 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機及實驗目的 2
第二章 文獻回顧 3
2.1 磁控濺鍍系統之原理 3
2.2 塊狀金屬玻璃 4
2.3 金屬玻璃薄膜 5
2.4 玻璃形成能力 7
2.4.1 Inoue的三大經驗法則 9
2.5 金屬玻璃之奈米壓痕 10
2.6 金屬玻璃之腐蝕行為 12
2.7 金屬玻璃薄膜之應用 17
2.8 鎢元素之應用與生物相容性 20
2.9 金屬玻璃之生物相容性 21
2.10 實驗室歷年金屬玻璃研究之成果 25
第三章 實驗方法與步驟 27
3.1 實驗流程與簡介 27
3.2 實驗步驟 28
3.2.1基材試片規格與前處理 28
3.2.2濺鍍設備 28
3.3 實驗流程 29
3.3.1實驗方法 29
3.3.2鍍膜製程 33
3.4 膜層性質分析 34
3.4.1成分分析 34
3.4.2表面與截面形貌分析 34
3.4.3晶體結構分析 34
3.4.4硬度試驗 35
3.4.5附著性HRC-DB試驗 37
3.4.6抗腐蝕能力試驗 38
3.4.7 MG-63人類骨瘤細胞培養實驗 39
第四章 結果與討論 43
4.1 第一組參數 43
4.1.1成分分析 43
4.1.2晶相分析 44
4.1.3熱示差分析 45
4.1.4表面及截面形貌分析 46
4.1.5硬度分析 50
4.1.6 HRC-DB附著分析 52
4.1.7動電位腐蝕試驗 53
4.1.8生物相容性 56
4.2 第二組參數 58
4.2.1成分分析 58
4.2.2晶相分析 59
4.2.3熱示差分析 60
4.2.4表面及截面形貌分析 61
4.2.5硬度分析 65
4.2.6 HRC-DB附著分析 67
4.2.7動電位腐蝕試驗 68
4.2.8生物相容性 71
4.2.9細胞螢光染色貼附型態 72
4.3 第三組參數 75
4.3.1成分分析 75
4.3.2晶相分析 76
4.3.3熱示差分析 77
4.3.4表面及截面形貌分析 78
4.3.5硬度分析 82
4.3.6 HRC-DB附著分析 83
4.3.7動電位腐蝕試驗 85
4.3.8生物相容性 88
4.3.9細胞螢光染色貼附樣貌 89
4.4 統整比較 92
第五章 結論 96
參考文獻 97
[1] Akihisa Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, 2000, 48 , 279-306.
[2] Akihisa Inoue, Baolong Shen, Akira Takeuchi, “Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems”, Mater. Sci. Eng, 2006, 441, 18-25.
[3] Zbigniew Kaczkowski, Manfred W Müller, P. Ruuskanen, “Piezomagnetic and magnetostrictive properties and structure of Fe-Cu-Nb-Ta-Si-B alloys annealed in vacuum”, Mater. Sci. Eng, 1997, 226-228, 681-684.
[4] Shujie Pang, Tao Zhang, Katsuhiko Asami, Akihisa Inoue, “Formation of bulk glassy Ni-(Co-) Nb-Ti-Zr alloys with high corrosion resistance”, Materials Transactions, 2002, 43, 1771-1773.
[5] Hiroshi Katagiri, Shinsaku Meguro, Michiaki Yamasaki, Hiroki Habazaki, Takeaki Sato, Asahi Kawashima, Katsuhiko Asami, Koji Hashimoto,”An attempt at preparation of corrosion-resistant bulk amorphous Ni-Cr-Ta-Mo-PB alloys”, Corros. Sci, 2001, 43, 183-191.
[6] Akihisa Inoue, Hisato Koshiba, Tao Zhang, Akihiro Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloy”, Jpn. J. Appl. Phys, 1998, 83, 1967-1972.
[7] Jinn Chu, Shian-Ching Jang, Jen-Chi Huang, Hung-Sheng Chou, Yung-Chin Yang, Jian-Chao Ye, Yun-Che Wang, Jyh-Wei Lee, Feng-Xiao Liu, Peter-Kaechuei Liaw, Yen-Chen Chen, Cheng-Min Lee, Chia-Lin Li, Cut Rullyani, “Thin film metallic glasses unique properties and potential applications”, Thin Solid Films, 2012, 520, 5097-5122.
[8] Li-Ting Chen, Jyh-Wei Lee, Yung-Chin Yang, Bih-Show Lou, Chia-Lin Li, Jinn Chu, “Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses”, Surf. Coat.Technol, 2014, 260, 46-55.
[9] Yu-Lun Deng, Jyh-Wei Lee, Bih-Show Lou, Jenq-Gong Duh, Jinn Chu, Shian-Ching Jang, “The fabrication and property evaluation of Zr–Ti–B–Si thin film metallic glass materials”, Surf. Coat. Technol, 2014, 259, 115-122.
[10] Ching-Yen Chuang, Jyh-Wei Lee, Chia-Lin Li, Jinn Chu, “Mechanical properties study of a magnetron sputtered Zr-based thin film metallic glass”, Surf. Coat. Technol, 2013, 215, 312-321.
[11] Ching-Yen Chuang, Yi-Chia Liao, Jyh-Wei Lee, Chia-Lin Li, Jinn Chu, Jenq-Gong Duh, “Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution”, Thin Solid Films, 2013, 529, 338-341.
[12] C.L. Chiang, Jinn Chu, Frank Liu, Peter-Kaechuei Liaw, Raymond A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Appl. Phys. Lett, 2006, 88, 131902.
[13] Balasubramanian Subramanian. “In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels”, Mater. Sci. Eng, 2015, 47, 48-56.
[14] Pei-Hua Tsai, Y.Z. Lin, Jiac-Yuan Li, Sheng-Rui Jian, Shian-Ching Jang, Chia-Lin Li, Jinn Chu, Jen-Chi Huang. “sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallis glass film coating”, Intermetallics, 2012, 31, 127-131.
[15] Shian-Ching Jang, Sheng-Rui Jian, C.F. Chang, Liang-Jan Chang, Yung-Chuan Huang, Tsung-Hsiung Li , Jui-Chien Huang, Chain-Tsuan Liu, “ Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, J. Alloys Compd, 2009, 478, 215-219.
[16] Peter J. Kelly, R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, 2000, 56, 159-172.
[17] 楊明輝,脈衝磁控濺鍍技術介紹,工業材料雜誌,2006,232,91。
[18] Akihisa Inoue, Tao Zhang, Tsuyoshi Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Mater. Trans. JIM, 1989, 30, 965-972.
[19] Akihisa Inoue, ”High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates”, Mater. Trans. JIM. , 1995, 36, 866-875.
[20] William L. Johnson, Arthur R.Williams “Structure and properties of transition-metal -metalloid glasses based on refractory metals”, Phys Rev B, 1979, 20, 1640.
[21] Anil P. Thakoor, James L. Lamb, Sanjeev Kummar Khanna, Madhav Mehra,William L. Johnson, “Refractory amorphous metallic (W0.6Re0.4)76B24 coatings on steel substrates”, Appl Phys, 1985, 58, 3409.
[22] Madoka Ohtsuki, Kyoko Nagata, Ryuji Tamura and Shin Takeuchi, “Tungsten-Based Metallic Glasses with High Crystallization Temperature, High Modulus and High Hardness”, Materials Transactions, 2005, 46, 48-53.
[23] William H. Peter, Raymond A. Buchanan, Chain-Tsuan Liu, Peter Kaehuei Liaw, Mark L. Morrison, Joseph A. Horton, Cecil A. Carmichael, Jeffrey L. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics , 2002, 1157-1162.
[24]Kai-Jin Huang, Chang-Sheng Xie, Tai-Man Yue, “Microstructure of Cu-based Amorphous Composite Coatings on AZ91D Magnesium Alloy by Laser Cladding”, J. Mater. Sci. Technol, 2009, 25, 492-498.
[25] Kai-Jin Huang, Li yan, Cun-Shan Wang, Chang-Sheng Xie, Chang-Rong Zhou, “Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy”, Trans. Nonferrous Met. Soc. China, 2010, 20, 1351-1355.
[26] Shantanu V. Madge, Arnaud Caron, Robert Gralla, Gerhard Wilde, Suman Kumari Pathak Mishra, “Novel W-based metallic glass with high hardness and wear resistance”, Intermetallics, 2014, 47, 6-10.
[27] 潘岱進, 藉由in-situ 析出富Ta 相對鋯基金屬玻璃複合材機械性質及熱性質, 碩士學位論文,義守大學材料科學與工程學系,2009。
[28] Akihisa Inoue, T. Nakamura, N. Nishiyama and Tsuyoshi Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Structure Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, 1992, 33, 937-945.
[29] Akihisa Inoue, Tao Zhang, Tsuyoshi Masumoto, “Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K”, Mater. Trans., JIM, 1991, 32, 1005-1008.
[30] Zhaoping Lu, Yi Li, Serchoon Ng, “Reduced glass transition temperature and glass forming ability of bulk glass forming alloys”, J Non-Cryst Solid, 2002, 270, 103-114.
[31] Zhaoping Lu, Chaintsuan Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, 2002, 50, 3501-3512.
[32] Akihisa Inoue, A. Takeuchi and Tao Zhang, “Ferrmagnetic bulk amorphous alloys”, Metallurgical Materialia Transactions, 1998, 29, 1779-1793.
[33] Christopher A. Schuh, Taigang Nieh, “A nanoindentation study of serrated flow in bulk metallic glasses”, Acta Mater, 2003, 51, 87-99.
[34] Bing Yang, Taigang Nieh, “Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass”, Acta Mate, 2007, 55, 295-300.
[35] Jordina Fornell, Emma Rossinyol, Santiago Surinach, Maria Dolors Baro, Weihuo Li, Jordi Sort, “Enhanced mechanical properties in a Zr-based metallic glass caused by deformation-induced nanocrystallization”, Scripta Materialia, 2010, 62 , 13-16.
[36] Yu-Fu Deng, Lian-Long He, Q. S. Zhang, Hai-Feng Zhang, Heng-Qiang Ye, “HRTEM analysis of nanocrystallization during uniaxial compression of a bulk metallic glass at room temperature”, Ultramicroscopy , 2004, 98 , 201-208.
[37] Devinder Pal Singh, Rajiv Kumr Mandal, Radhey shyam Tiwari, Onkar Nath Ath Srivastava, “Nanoindentation characteristics of Zr69.5Al7.5 − xGaxCu12Ni11 glasses and their nanocomposites”, J Alloy Compd, 2011, 509, 8657-8663.
[38] Rejin Raghavan, Boopathy Kombaiah, Max Dobeli, Rolf P. Erni, Upadrasta Ramamurty, Johann K. Michler, “Nanoindentation response of an ion irradiated Zr-based bulk metallic glass”, Mat Sci Eng a-Struct, 2012, 532, 407-413.
[39] Hong-Chao Kou, Yong Li, Tie-Bang Zhang , Jian-Ping Li, Jin-Shan Li, “Electrochemical corrosion properties of Zr- and Ti-based bulk metallic glasses”, Trans. Nonferrous Met. Soc. China, 2011, 21, 552-557.
[40] Asahi Kawashima, Kazuyo Ohmura, Yoshihiko Yokoyama, Akihisa Inoue, “The corrosion behaviour of Zr-based bulk metallic glasses in 0.5M NaCl solution”, Corros Sci, 2011, 53, 2778-2784.
[41] Hai-Bo Lu, Lai-Chang Zhang, Annett P. Gebert, Linda D. Schultz, “Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions”, J Alloy Compd, 2008, 462, 60-67.
[42] M. Hemmati Pourgashti, Ehsan Marzbanrad, Elaheh Ahmadi, “Corrosion behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass in various aqueous solutions”, Mater. Des, 2010, 31, 2676-2679.
[43] Petre Flaviu Laviu Gostin, Ralph Sueptitz, Annett P. Gebert, Uta Kuehn , Linda D. Schultz, “Comparing the corrosion behaviour of Zr66/Ti66–Nb13Cu8Ni6.8Al6.2 bulk nanostructure-dendrite composites”, Intermetallics, 2008, 16, 1179-1184.
[44] Di Wang, Sen Wang, Jian-Qiang Wang, “Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass”. Corros. Sci, 2012, 59, 88-95.
[45] Jen-Chun Chang, Jyh-Wei Lee, Bih-Show Lou, Chia-Lin Li, Jinn Chu, “Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses”, Thin Solid Films, 2015, 584, 253-256.
[46] Jinn Chu, Tz-Yah Liu, Chia-Lin Li, Chen-Hao Wang, Shian-Ching Jang, Ming-Jen Chen, Shih-Hsin Chang, Wen-Chien Huang, “Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application”, Thin Solid Films, 2014, 561, 102-107.
[47] Pei-Hua Tsai, Y.Z. Lin, Jiac-Yuan Li, Sheng-Rui Jian, Shian-Ching Jang , Chia-Lin Li, Jinn Chu, Jen-Chi Huang, “Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating”, Intermetallics, 2015, 31, 127-131.
[48] A. Koutsospyros, Washington J. Braida, Christos Christodoulatos, Dimitris Dermatas, Nikolay S. Strigul, “A review of tungsten: From environmental obscurity to scrutiny”, J Hazard Mater, 2006, 136, 1-19.
[49] Richard Wayne Leggett, “A model of the distribution and retention of tungsten in the human body”, Sci Total Environ, 1997, 206, 147-165.
[50] Matthias Peuster, Christoph J. Fink, Christian von Schnakenburg, “Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells” Biomaterials, 2003, 24, 4057-4061.
[51] Akihisa Inoue, Wei Zhang, Tao Zhang, “Cu-based bulk glassy alloys with high tensile strength of over 2000 MPa”, J Non-Cryst Solids, 2002, 304, 200-209.
[52] Akihisa Inoue, Tao Zhang, Tsuyoshi Masumoto, “Zr-Al-Ni amorphous-alloys with high glass-transition temperature and significant supercooled liquid region”, Mater Trans JIM, 1990, 31, 177-183.
[53] Kaifeng Jin, Jorg F. Loffler, “Bulk metallic glass formation in Zr-Cu-Fe-Al alloys”, Appl Phys Lett, 2005, 86, 241909.
[54] Donghua Xu, Gang Duan, William L. Johnson, Carol M. Garland, “Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm”, Acta Mater, 2004, 52, 3493-3497.
[55] X. H. Lin, William L. Johnson, “Formation of Ti-Zr-Cu-Ni bulk metallic glasses”, J Appl Phys, 1995, 78, 6514-6519.
[56] Akihisa Inoue, Akira Kato, Tao Zhang, SungGyoo Kim, Tsuyosi Masumoto, “Mg-Cu-Y Amorphous-alloys with high mechanical strengths produced by a metallic mold casting method”, Mater Trans JIM, 1991, 32, 609-616.
[57] Neelam Kaushik, Parmanand Sharma, Samad Ahadian, Ali Khademhosseini, Masaharu Takahashi, Akihiro Makino, Shuji Tanaka, Masayoshi Esashi, “Metallic glass thin films for potential biomedical applications”, J Biomed Mater Res, 2014, 102, 1544-1552.
[58] Balasubramanian Subramanian, “In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels”, Materials Science and Engineering: C, 2015, 47, 48-56.
[59] Jing Li, Ling-Ling Shi, Zhend-Dong Zhu, Qiang He, Hong-Jun Ai , Jian Xu , “Zr61 Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses”, Materials Science and Engineering: C, 2013, 33, 2113-2121.
[60] C. H. Huang, Yi-Shyang Huang, Y. S. Lin, Che-Hsin Lin, Jacob Chih Huang, Chung Hwan Chen, Jiac-Yuan Li, Y. H. Chen, Shian Ching Jang, “Electrochemical and biocompatibility response of newly developed TiZr-based metallic glasses”, Materials Science and Engineering: C, 2014, 43, 343-349.
[61] Tzu-Pin Hsiao, Yung-Chin Yang, Jyh-Wei Lee, Chia-Lin Li, Jinn Chu, “The microstructure and mechanical properties of nitrogen and boron contained ZrCuAlNi thin film metallic glass composites”, Surf Coat Tech, 2013, 237, 276-283.
[62] Ke Wang, Deng Pan, Ming-Wei Chen, Wei Zhang, Xin-Min Wang, Akihisa Inoue, “Measuring elastic energy density of bulk metallic glasses by nanoindentation”, Mater Trans, 2006, 47, 1981-1984.
[63] Warren C. Oliver, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res, 1992, 7, 1564-1583.
[64] Petra Maier, Asta Richter, Roy G. Faulkner, Ronald Ries, “Application of nanoindentation technique for structural characterization of weld materials”, Materials Characterization, 2002, 48, 329-339.
[65] Magnus Oden, Claes Ericsson, Greger Hakansson, Henrik Ljungcrantz, “Microstructure and mechanical behavior of arc-evaporated Cr–N coatings”, Surf. Coat. Technol. , 1999, 114, 39-51.
[66] 吳綜信,於對流與微流體狀態下化學藥物敏感性測試之探討,碩士論文,逢甲大學化學工程學系,2008。
[67] Shengli Zhu, Xinmin Wang, Fengxiang Qin, Masahiro Yoshimura, Akihisa Inoue, “Effects of Si addition on the glass-forming ability, glass transition and crystallization behaviors of Ti40Zr10Cu36Pd14 bulk glassy alloy”, Intermetallics, 2008, 16, 609-614.
電子全文 電子全文(網際網路公開日期:20210816)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔