(3.92.96.236) 您好!臺灣時間:2021/05/09 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張軒倫
研究生(外文):Hsuan-Lun Chang
論文名稱:單靶磁控共濺鍍製備鉭鈦銅金屬玻璃薄膜之特性研究
論文名稱(外文):The Study of Ta-Ti-Cu Ternary Thin Film Metallic Glass Fabricated by Single Target Magnetron Co- Sputtering
指導教授:王錫九陳適範陳適範引用關係
指導教授(外文):Shea-Jue WangShih-Fan Chen
口試委員:林於隆薄慧雲魏肇男
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:奈米壓痕金屬玻璃薄膜
外文關鍵詞:Nano-indentationTFMGsThin film metallic glassesTa-Ti-Cu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用放置銅與鈦金屬片於鉭靶材上,透過固定靶材上銅面積為1 cm2改變鈦金屬片的數量來進行改變成分之單靶磁控共濺鍍製備鉭鈦銅三元金屬玻璃薄膜並且與鉭鋯銅金屬玻璃薄膜進行比較、分析與探討。無論是鉭鈦銅薄膜或鉭鋯銅薄膜其XRD圖譜皆為寬廣繞射峰證實為非晶結構。鉭鈦銅薄膜厚度約450 nm,鉭鋯銅薄膜厚度約515 nm,平均表面粗糙度(Average Roughness, Ra)皆非常良好不超過0.3 nm。機械性質方面,鉭鈦銅薄膜皆優於鉭鋯銅薄膜,鉭鈦銅薄膜在Ta3Ti5Cu1有最高硬度13.18 GPa與最高彈性係數168.9 GPa。
Ta-Ti-Cu thin film metallic glasses(TFMGs) fabricated by placing the copper(Cu) and titanium (Ti) metal plates on the tantalum(Ta) target to single target magnetron co-sputter. The thin films’ composition can be changed by changing the metal plates’ number. In our work, the Cu’s area is constant, just adjusted the metal area of Ta and Ti to fabricate thin film metallic glasses, and compared with Ta-Zr-Cu thin film metallic glasses. The Ta-Ti-Cu or Ta-Zr-Cu thin films’ XRD pattern shows the diffused broad hump. The average thickness of Ta-Ti-Cu thin films is 450 nm, and the Ta-Zr-Cu is 515 nm. Both of systems’ average roughness are not exceed to 0.3 nm. Ta-Ti-Cu thin films’ mechanical property are better than Ta-Zr-Cu thin films. In the Ta-Ti-Cu, Ta3Ti5Cu1 has the highest hardness reached 13.18 GPa and the highest elastic modulus 168.9 GPa.
摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1研究簡介 1
1.2研究動機 2
第二章 文獻回顧 3
2.1磁控濺鍍系統之原理 3
2.2金屬玻璃的發展歷程 5
2.3金屬玻璃之特性 10
2.3.1機械性質 10
2.3.2磁性質 11
2.3.3耐蝕性 11
2.4金屬玻璃的結構 13
2.4.1非晶態原子堆積模型 13
2.4.2自由體積理論 14
2.4.3剪切帶 15
2.5金屬玻璃形成的熱力學與動力學觀點 16
2.6玻璃形成能力 18
2.6.1 Inoue的三大經驗法則 18
2.6.2合金原子間的鍵結與晶體結構特性 19
2.6.3評估玻璃形成能力之參數 20
2.6.3.1過冷液態區間 20
2.6.3.2簡約玻璃轉化溫度 21
2.6.3.3 γ參數 23
2.7金屬玻璃薄膜 26
2.8金屬玻璃薄膜的研究與應用 27
第三章 實驗流程與方法 33
3.1實驗流程與簡介 33
3.2實驗方法與步驟 34
3.2.1靶材規格介紹與前處理 34
3.2.2 基板清洗 35
3.2.3實驗方法與步驟 35
3.3 實驗分析與設備介紹 37
3.3.1薄膜濺鍍設備 37
3.3.2 X光繞射儀(XRD) 39
3.3.3掃描式電子顯微鏡(SEM) 39
3.3.4電子微探分析儀(EPMA) 40
3.3.5原子力顯微鏡(AFM) 41
3.3.6奈米壓痕儀(Nano-indenter) 43
第四章 結果與討論 44
4.1 Inoue三大經驗法則之判定 44
4.2成分分析 46
4.3薄膜結構分析比較 47
4.4薄膜表面形貌與表面粗糙度測定與比較 50
4.5薄膜縱剖面分析比較 52
4.6薄膜機械性質分析 55
4.6.1奈米壓痕比較 55
4.6.2鉭元素對機械性質之影響 59
第五章 結論 61
參考資料 62
1.P.Haasen, “Metallic Gasses”, Journal of Non-Crystalline Solids, vol. 56, 1983, pp.191-200.
2.陳瑞凱,金屬玻璃的研究現況,鑛冶,第166 期,1999,114 - 121頁。
3.陳明弘,利用單靶磁控共濺鍍製備鉭鋯銅三元金屬玻璃薄膜及其特性之研究,碩士論文,國立台北科技大學材料科學與工程研究所,臺北,2015。
4.P.J Kelly, R.D Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, vol 56(3), 2000, pp. 159–172.
5.王福貞;聞立時, 表面沉積技術, 機械工業出版社, pp.114-204。
6.王一禾、楊膺善,「非晶態合金」,北京:冶金工業出版社,1988,第346頁 。
7.W. Klement, R. H. Willens, Pol Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, vol. 187, 1960, pp.869-870.
8.吳學陞, "新興材料-塊狀非晶質金屬材料," 工業材料, vol. 149, 1999., pp. 154-159。
9.惠希良,陳國良,「塊體非晶合金」,北京:化學工業出版社,2007,第1頁。
10.H. S. Chen, C. E. Miller, ”A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids, The American Institute of Physics, 1970, pp.1237.
11.Jörg F.Löffler, “Bulk Metallic Glasses”, Intermetallics, vol. 11, 2003, pp.529-540.
12.A.Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys”, Acta Materialia, vol. 48, 2000, pp.279-306.
13.M.Heilmaier,”Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, vol. 117(3), 2001,pp. 374-380
14.K. L. Sahoo*, V. Rao and A. Mitra, “Crystallization Kinetics in an Amorphous Al–Ni–Mm–Fe Alloy”, Materials Transactions, vol. 44(6), 2003, pp. 1075-1080.
15.D.B. Miracle, A.L. Greer, K.F. Kelton, “Icosahedral and Dense Random Cluster Packing in Metallic Glass Structures”, Journal of Non-Crystalline Solids, vol. 354, 2008, pp.4049-4055.
16.D. B. Miracle, "The efficient cluster packing model – An atomic structural model for metallic glasses," Acta Materialia, vol. 54, 2006, pp. 4317-4336.
17.D. B. Miracle, "A structural model for metallic glasses," Nat Mater, vol. 3, 2004, pp. 697-702
18.Yang Yu, Reinhard Krause-Rehberg, “The Average Free Volume Model of Liquids”, Chemical Physics, 2014.
19.D. Pan, Y. Yokoyama, T. Fujita, Y. H. Liu, S. Kohara, A. Inoue, and M. W. Chen, “Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass”, Applied Physics Letters, vol. 95, 2009, pp.141909
20.Christopher A. Schuh*, Alan C. Lund, “Atomistic basis for the plastic yield criterion of metallic glass”, nature materials , vol. 2, 2003, pp.449-452
21.Spaepen.F,“A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25(4), 1977, pp. 407-415.
22.謝勝輝、鄭子越、曾燮榕、胡強、傅冬菊,塊體非晶合金的剪切帶演變與結構研究,深圳大學學報理工版,第27卷,第4期,2010,第440-444頁。
23.惠希良,陳國良,「塊體非晶合金」,北京:化學工業出版社,2007,第1頁。
24.Reza Abbaschian, Lara Abbaschian, Roberts E. Reed-Hill, “Physical Metallurgy Principle”, U.S.A. :Cengage Learning, 2009, pp.408-461.
25.A.Inoue, K.Hashimoto, “Amorphous and Nano-crystalline Materials”, Tokyo:Springer, 2001, pp.5
26.A.Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys”, Acta Materialia, vol. 48, 2000, pp.279-306
27.高誠輝,「非晶態合金鍍及其鍍層性能」,科學出版社,2004,第39-155頁。
28.戴道生、韓汝琪,「非晶態物理學」,臺北:電子工業出版社,1988。
29.Z.P. Lu, H. Tan, Y. Li, S.C. Ng, “The Correlation Between Reduced Glass Transition Temperature and Glass Forming Ability of Bulk Metallic Glasses”, Scripta Materialia, vol. 42, 2000, pp.-667-673.
30.Z.P. Lu, Y. Li, S.C. Ng, “Reduced Glass Transition Temperature and Glass Forming Ability of Bulk Glass Forming Alloys”, Journal of Non-Crystalline Solids, vol. 270, 2000, pp.103-114.
31.Theodore A. Waniuk, Jan Schroers, William L. Johnson, “Critical Cooling Rate and Thermal Stability of Zr–Ti–Cu–Ni–Be Alloys”, Applied Physics Letters, vol. 78, pp.1213-1215.
32.A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “High-Strength Cu-Based Bulk Glassy Alloys in Cu–Zr–Ti and Cu–Hf–Ti Ternary Systems”, Acta Materialia, vol. 49, 2001, pp.2645-2652.
33.Z.P. Lu, C.T. Liu, “A New Glass Forming Ability Criterion for Bulk Metallic Glasses”, Acta Materialia, vol. 50, 2002, pp.3501-3512.
34.C. T. Liu, L. Heatherly, J. A. Horton, D. S. Easton, C. A. Carmichael, J. L. Wright, et al., "Test environments and mechanical properties of Zr-base bulk amorphous alloys," Metallurgical and Materials Transactions A, vol. 29, 1998, pp. 1811-1820.
35.Z. Han, H. Yang, W. F. Wu, and Y. Li, "Invariant critical stress for shear banding in a bulk metallic glass," Applied Physics Letters, vol. 93, 2008, p. 231912.
36.S. X. Song, H. Bei, J. Wadsworth, and T. G. Nieh, "Flow serration in a Zr-based bulk metallic glass in compression at low strain rates," Intermetallics, vol. 16, 2008, pp. 813-818.
37.H. Bei, S. Xie, and E. P. George, "Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass," Physical Review Letters, vol. 96, 2006, p. 105503.
38.Rajak Syed, S.K. Ghosh, P.U. Sastry, G. Sharma, R.C. Hubli, J.K. Chakravartty, “Electrodeposition of Thick Metallic Amorphous Molybdenum Coating from Aqueous Electrolyte”, Surface & Coatings Technology, vol. 261, 2015, pp.15-20.
39.L. Sziráki, E. Kuzmann, G.B. Lak, M. El-Sharif, C.U. Chisholm, S. Stichleutner, K. Havancsák,K. Zih-Perényi, Z. Homonnay, A. Vértes, Study of Electrodeposition of Amorphous Sn–Ni–Fe Ternary Alloys from a Gluconate Based Rlectrolyte”, Surface & Coatings Technology, vol. 211, 2012, pp.184-187.
40.D. Mencer, “Electroless Deposition of Amorphous Ni-Re-P Alloys from Acidic Hypophosphite Solutions”, Journal of Alloys and Compounds, vol. 306, 2000, pp.158–162.
41.J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K. Liaw, “Thin Film Metallic Glasses: Preparations, Properties, and Applications”, JOM, vol. 62, 2010, pp.19-24.
42.B. M. Clemens, “Amorphous Zirconium-Nickel Films Formed by Solid State Reactions”, Journal of Non-Crystalline Solids, 61-62, 1984, pp.817-822.
43.J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, “Annealing-induced Full Amorphization in a Multicomponent Metallic Film”, Physical Review B, vol. 69, 2001, 113410.
44.Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw,” Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy”, Thin Solid Films, vol 544, 2013, pp. 331-334.
45.Alemu Tesfaye Negussie, J.P. Chu, Wahyu Diyatmika, C.M. Lee, Chia-chi Yu, Y.L. Shen, C.H. Hsueh, “Annealing-induced Indentation Recovery in Thin Film Metallic Glasses: Effects of Indenter Tip Geometry, Film Thickness and Film Composition”, Surface & Coatings Technology, vol.261, 2015, pp.351-355.
46.Alemu Tesfaye Negussie, Wahyu Diyatmika, J.P. Chu, Y.L. Shen, J.S.C. Jang, C.H. Hsueh, “Annealing-induced Shape Recovery in Thin Film Metallic Glass”, Journal of Alloys and Compounds, 613, 2014, pp.157–163.
47.P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, “Sharpness Improvement of Surgical Blade by Means of ZrCuAlAgSi“, Metallic Glass and Metallic Glass Thin Flm Coating”, Intermetallics, 31 , 2012, pp.127-131.
48.A. Caron a, R. Wunderlich a, D.V. Louzguine-Luzgin , G. Xie , A. Inoue , H.-J. Fecht, ” Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic, and plastic properties”, Acta Materialia, vol. 58, 2010, pp. 2004-2013.
49.A.Guinier, X-Ray Diffraction In Crystals Imperfect Crystals and Amorphous Bodies, Dover, New York, 1994.
50.T.C.Hufnagel, S. Brennan, “Short- and medium-range order in (Zr70Cu20Ni10)90−xTaxAl10 bulk amorphous alloys”, Physcal Review B, vol. 67, 2003, 014203.
51.Pao-Sheng Chen, Hsien-Wei Chen, Jenq-Gong Duh, Jyh-Wei Le, Jason Shian-Ching Jang, " Characterization of Mechanical Properties and Adhesion of Ta-Zr-Cu-Al-Ag Thin Film Metallic Glasses”, Surface & Coatings Technology, 231, 2013, pp.332-336.
52.Pao-Sheng Chen, Hsien-Wei Chen, Jenq-Gong Duh, Jyh-Wei Lee,and Jason Shian-Ching Jang, “Mechanical and Thermal Behaviors of Nitrogen-doped Zr-Cu-Al-Ag-Ta––An Alternative Class of Thin Film Metallic Glass”, Applied Physics Letters, 101, 2012, 181902.
53.大同大學貴重儀器中心網站 AFM使用申請單
54.W.C. Oliver, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology”, J. Mater. Res., vol. 19, 2004, pp.4-20.
55.Akira Takeuchi, Akihisa Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application, to Characterization of the Main Alloying Element”, Materials Transactions, vol.46, 2005, pp.2817-2829.
56.陳致榮,鋯鈦與鋯銅非晶質薄膜之濺鍍製備與性質分析,碩士論文,國立中山大學材料科學研究所,高雄,2008。
57.Sheng-Rui Jian, “Pop-in Effects and Dislocation Nucleation of C-plane Single-crystal ZnO by Berkovich Nanoindentation”, Journal of Alloys and Compounds, 644, 2015, pp.54–58.
58.F. Zeng, Y. Gao, L. Li, D.M. Li, F. Pan, “Elastic modulus and hardness of Cu–Ta amorphous films”, Journal of Alloys and Compounds, vol.389, 2005, pp.75-79.
59.Joseph Lee, Kuo-Hua Huang, Kai-Chieh Hsu, Huan-Chien Tung, Jyh-Wei Lee, Jenq-Gong Duh, ”Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering”, Surface and Coatings Technology, vol.278, 2015, pp. 132-137.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔