[1]ASTM, "Standard Terminology for Additive Manufacturing Technologies," Designation: F2792-12a.
[2]P. D. Motevalli and B. Eghbali, "Microstructure and Mechanical Properties of Tri-metal Al/Ti/Mg Laminated Composite Processed by Accumulative Roll Bonding," Materials Science and Engineering A, vol. 628, 2015, pp. 135-142.
[3]D. Banerjee, A. Pilchak, and J. C. Williams, "Processing, Structure, Texture and Microtexture in Titanium Alloys," Materials Science Forum, vol. 710, 2012, pp. 66-84.
[4]R. Müller, J. Abke, E. Schnell, D. Scharnweber, R. Kujat, C. Englert, D. Taheri, M. Nerlich and P. Angele, "Influence of Surface Pretreatment of Titanium- and Cobalt-based Biomaterials on Covalent Immobilization of Fibrillar Collagen," Biomaterials, vol. 27, 2006, 4059-4068.
[5]M. Yamada, "An Overview on the Development of Titanium Alloys for Non-Aerospace Application in Japan," Materials Science and Engineering A, vol. 213, 1996, pp. 8-15.
[6]J. D. Prince, "3D Printing: an Industrial Revolution," Journal of Electronic Resources in Medical Libraries, vol. 11, 2014, pp. 39-45.
[7]S. H. Huang, P. Liu, A. Mokasdar and L. Hou, "Additive Manufacturing and Its Societal Impact: a Literature Review," Int J Adv Manuf Technol, vol.67, 2013, pp. 1191-1203.
[8]蔡佩宜,黃志傑,「客製化3D列印醫材技術之發展趨勢」,工業材料雜誌,第36期,2015,第83-88頁。[9]W. Gaoa, Y. Zhanga, D. Ramanujana, K. Ramania, Y. Chenc, C. B. Williams, C. C.L. Wange, Y. C. Shin, S. Zhanga and P. D. Zavattieri, "The Status, Challenges, and Future of Additive Manufacturing in Engineering," Computer-Aided Design, vol. 69, 2015, pp. 65-89.
[10]J. Moon, A. C. Caballero, L. Hozer, Y. M. Chiang and M. J. Cima, "Fabrication of Functionally Graded Reaction Infiltrated SiC-Si Composite by Three-Dimensional Printing (3DP™) Process," Materials Science and Engineering A, vol. 298, 2001, pp. 110-119.
[11]S. Naghieh, M. R. Karamooz Ravari, M. Badrossamay, E. Foroozmehr and M. Kadkhodaei, "Numerical Investigation of the Mechanical Properties of the Additive Manufactured Bone Scaffolds Fabricated by FDM: the Effect of Layer Penetration and Post-Heating," Journal of the Mechanical Behavior of Biomedical Materials, vol. 59, 2016, pp. 241-250.
[12]K. Xu and Y. Chen, "Mask Image Planning For Deformation Control in Projectionbased Stereolithography Process," International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, August 12-15, 2012, pp. 1-13.
[13]X. Ma, "Research on Application of SLA Technology in the 3D Printing Technology," Applied Mechanics and Materials, vol. 401-403, 2013, pp. 938-941.
[14]D. Ahn, J. H. Kweona, J. Choi and S. Lee, "Quantification of Surface Roughness of Parts Processed by Laminated Object Manufacturing," Journal of Materials Processing Technology, vol. 212, 2012, pp. 339-346.
[15]R. Ganeriwala and T. Zohdi, "A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering," Springer-Verlag Berlin Heidelberg, vol. 21, 2016, pp. 1-15.
[16]S. L. Sing, J. An, W. Y. Yeong and F. E. Wiria, "Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs," Journal of Orthopaedic Research, vol. 34, 2016, pp.369-385.
[17]S. Zhang, Q. Wei, L. Cheng, S. Li and Y. Shi, "Effects of Scan Line Spacing on Pore Characteristics and Mechanical Properties of Porous Ti6Al4V Implants Fabricated by Selective Laser Melting," Materials and Design, vol. 63, 2014, pp. 185-193.
[18]K. Bassett, R. Carriveau and D. S. K. Ting, "3D Printed Wind Turbines Part 1: Design Considerations and Rapid Manufacture Potential," Sustainable Energy Technologies and Assessments, vol. 11, 2015, pp. 186-193.
[19]A. C. Leon, Q. Chen, N. B. Palaganas, J. O. Palaganas, J. Manapat and R. C. Advincula, "High Performance Polymer Nanocomposites for Additive Manufacturing Applications," Reactive and Functional Polymers, vol. 103, 2016, pp. 141-155.
[20]J. Y. Lee, W. S. Tan, J. An, C. K. Chua, C. Y. Tang, A. G. Fane and T. H. Chong, "The Potential to Enhance Membrane Module Design with 3D Printing Technology," Journal of Membrane Science, vol. 499, 2016, pp. 480-490.
[21]M. K. Dimah, F. D. Albeza, V. A. Borrás and A. I. Muñoz, "Study of the Biotribocorrosion Behaviour of Titanium Biomedical Alloys in Simulated Body Fluids by Electrochemical Techniques," Wear, vol. 294-295, 2012, pp. 409-418.
[22]M. Peters and C. Leyens, Titanium and Titanium Alloys, Germany: WILEY-VCH GmbH & Co. KGaA, 2003, pp. 1-36.
[23]R. Pederson, "Microstructure and Phase Transformation of Ti-6Al-4V," Licentiate thesis, Vol. 30, 2002, pp. 1-31.
[24]M. J. Donachie, Titanium: A Technical Guide, 2nd ed., USA: ASM International, 2000, pp. 1-381.
[25]賴耿陽,金屬鈦理論與應用,台灣:復漢出版社,1990年,第36頁。
[26]洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,2013,第12-22頁。
[27]W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 8th ed., Asia: John Wiley & Sons, 2011, p. 203.
[28]I. Shin and E. A. Carter, "Orbital-Free Density Functional Theory Simulations of Dislocations in Magnesium," Modelling and Simulation in Materials Science and Engineering, vol. 20, 2012, pp. 1-23.
[29]H. Beladi, Q. Chao and G. S. Rohrer, "Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy," Acta Materialia, vol. 80, 2014, pp. 478-489.
[30]ASM, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, USA: ASM International, 1990, pp. 586-647.
[31]S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik and O.Ivasishun, "Influence on Texture on Beta Grain Growth During Contiuous Annealing of Ti-6Al-4V," Materials Science and Engineering A, vol. 299, 2001, pp. 225-234.
[32]H. J. Rack and J. I. Qazi, "Titanium Alloys for Biomedical Applications," Materials Science and Engineering C, vol. 26, 2006, pp. 1269-1277.
[33]G. Lutjering and J. C. Williams, Titanium: Engineering Materials and Processes, 2nd ed., New York: Springer-Verlag Berlin Heidelberg, 2007, pp. 203-250.
[34]T. Ahmed and H. J. Rack, "Phase Transformations during Cooling in α+β Titanium Alloys," Materials Science and Engineering A, vol. 243, 1998, pp. 206-211.
[35]W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt and M. Qian, "Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties," JOM, Vol. 67, 2015, pp. 668- 673.
[36]B. Vrancken, L. Thijs, J. P. Kruth and J. V. Humbeeck, "Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties," Journal of Alloys and Compounds, vol. 541, 2012, pp. 177-185.
[37]R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, "Influence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimodal vs. Lamellar Structures," Metallurgical and Materials Transactions A, vol. 33, 2002, pp. 899-918.
[38]洪連輝、劉立基、魏榮君,固態物理學導論,台灣:高立圖書有限公司,1997年,第145-147頁。
[39]R. E. Newnham, Properties of Materials, USA: Oxford University Press, 2005, chapter18.
[40]J. S. Dugdale, D. K. C. Macdonald, "Lattice Thermal Conductivity," Physical Review, vol. 98, 1955, pp. 1751-1752.
[41]黃昌偉,陶瓷材料之熱性質分析,精密陶瓷特性及檢測分析,第10.1-10.54頁.
[42]W. S. Robert and G. L. Thomas, Process Heat Transfer, 2nd ed., USA: Elsevier Inc, 2014, pp. 1-30.
[43]P. S. Gaal, M. A. Thermitus and D. E. Stroe, "Thermal Conductivity Measurements Using the Flash Method," Journal of Thermal Analysis and Calorimetry, Vol. 78, 2004, pp. 185-189.
[44]M. A. Rehman and A. Maqsood, "Measurement of Thermal Transport Properties with an Improved Transient Plane Source Technique," International Journal of Thermophysics, Vol. 24, 2003, pp. 867-883.
[45]S. Krenek, K. Anhalt, A. Lindemann, C. Monte, J. Hollandt, J. Hartmann, "A Study on the Feasibility of Measuring the Emissivity with the Laser-Flash Method," Int J Thermophys, Vol 31, 2010, pp. 998-1010.
[46]J. Szałapak, K. Kiełbasiński, J. Krzemiński, A. Młożniak, E. Zwierkowska, M. Jakubowska and R. Pawłowski, "A Method of Calculating Thermal Diffusivity and Conductivity for Irregularly Shaped Specimens in Laser Flash Analysis," Metrol. Meas. Syst., Vol. XXII, 2015, pp. 521-530.
[47]R. Ding, J. Jiang and T. Gui, "Study of Impedance Model and Water Transport Behavior of Modified Solvent-Free Epoxy Anticorrosion Coating by EIS," J. Coat. Technol. Res., vol. 13, 2016, pp. 501-515.
[48]田福助,電化學理論與應用,台灣:高立圖書,2014年,第167-450頁。
[49]E. Poorqasemi, O. Abootalebi, M. Peikari and F. Haqdar, "Investigating Accuracy of the Tafel Extrapolation Method in HCl Solutions," Corrosion Science, vol. 51, 2009, pp. 1043-1054.
[50]K. A. Natarajan, Advances in Corrosion Engineering, IISc Bangalore, NPTEL Web Course, Lecture. 10, pp. 1-8.
[51]熊楚強、王月,電化學,台灣:新文京開發,2008年,第399-421頁。
[52]E. Vasilescu, P. Drob, D. Raducanu, I. Cinca, D. Mareci, J. M. C. Moreno, M. Popa, C. Vasilescu and J. C. M. Rosca, "Effect of Thermo-Mechanical Processing on the Corrosion Resistance of Ti6Al4V Alloys in Biofluids," Corrosion Science, vol. 51, 2009, pp. 2885-2896.
[53]T.S. Eyre, "Wear Characteristics of Metals," Tribology International, Vol. 9, 1976, pp. 203-212.
[54]劉家竣,材料磨損原理及其耐磨性,北京:清華大學出版社,1993,第11頁。
[55]邱雲堯、陳佳萬、張安欣,機械製造,台灣:文京圖書,1998年,第32頁。
[56]邵荷生、張清,金屬的磨料磨損與耐磨材料,北京:機械工業出版社,1988年。
[57]邵荷生、曲敬信,摩擦與磨損,北京:煤炭工業出版社,1992年。
[58]A. Molinari, G. Straffelini, B. Tesi and T. Bacci, "Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy," Wear, vol. 208, 1997, pp. 105-112.
[59]G. Straffelini and A. Molinari, "Dry Sliding Wear of Ti-6Al-4V Alloy as Influenced by the Counterface and Sliding Conditions," Wear, vol. 236, 1999, pp. 328-338.
[60]M. O. Alam and A. S. M. A. Haseeb, "Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear against Hardened Steel," Tribology International, vol. 35, 2002, pp. 357-362.
[61]ASTM, "Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure," Designation: C830-00.
[62]ASTM, "Standard Test Method for Thermal Diffusivity by the Flash Method," Designation: E1461-07.
[63]ASTM, "Standard Test Method for Vickers Hardness of Metallic Materials," Designation: E92-82.
[64]ASTM, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," Designation: G99-03.
[65]ASTM, "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements," Designation: G59-97.
[66]C. Qiu, S. Yue, N. J. E. Adkins, M. Ward, H. Hassanin, P. D. Lee, P. J. Withers and M. M. Attallah, "Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting," Materials Science and Engineering A, vol. 628, 2015, pp.188-197.
[67]L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck and J. P. Kruth, "A Study of the Microstructural Evolution during Selective Laser Melting of Ti-6Al-4V," Acta Materialia, vol. 58, 2010, pp. 3303-3312.
[68]M. Gelfi, A. Attanasio, E. Ceretti, A. Garbellini and A. Pola, "Micromilling of Lamellar Ti6Al4V: Cutting Force Analysis," Materials and Manufacturing Processes, vol. 31, 2016, pp. 919-925.