跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林啓維
研究生(外文):Chi-Wei Lin
論文名稱:雷射積層熔融製造Ti-6Al-4V合金之熱處理組織及性質研究
論文名稱(外文):Study on the Microstructure and Properties of Ti-6Al-4V by Selective Laser Melting and Heat Treatment
指導教授:陳貞光
口試委員:洪胤庭林於隆張世賢
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:選擇性雷射熔融、熱處理、Ti-6Al-4V、機械性質、物理性質、腐蝕性質
外文關鍵詞:selective laser meltingheat treatmentTi-6Al-4Vmechanical propertiesphysical propertiescorrosive properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用選擇性雷射熔融(SLM)製造Ti-6Al-4V合金,由於其逐層製造及冷卻速率快之特色,使其顯微組織與傳統製程差異甚大,因此本研究首要為確認選擇性雷射熔融製程中,顯微組織的形成機制與特性,進一步地發展適宜運用SLM成品之熱處理程序,以控制其組織及應用性能。實驗結果顯示,當雷射功率225 W,掃描速率658 mm/s時,SLM製程工件有最佳的緻密度。經以粉末堆疊熔融的SLM製程後,柱狀晶沿溫度梯度方向垂直形成於積層面,並沿著堆疊面生成圓盤狀的積層缺陷;因SLM製程之冷卻速率快速,獲得的組織為針狀α’麻田散體。當以高於β轉變溫度953°C的溫度進行熱處理時,柱狀晶結構重新成核成長,使各方向的組織形貌趨於一致,異向性得以獲得改善;而熱均壓處理則有效消除原製程試片的內部孔隙。在機械性質方面,因圓盤狀積層缺陷導致試片積層面受力截面較少,故積層面之硬度較低,而經熱均壓處理後,由於形成α+β組織及積層缺陷的消除,使其具有最佳的韌性,故耐磨性質最佳。由物理性質的量測顯示,原製程試片各方向之熱擴散係數及熱導率數值相當,並無明顯異向性,其均勻α’結構比起熱處理後試片有較高的熱擴散速率,故SLM製程試片(6.5 W/mK)有高出傳統製程(5.36 W/mK)達21%的熱傳導率;而沿積層方向(Z)則有最高的電導率5.93×105 Ω-1m-1,垂直積層的方向,則為5.34×105 Ω-1m-1,生成明顯的異向性;這些組織在經過熱處理後,電導率亦趨於等向性。此外,積層製造之試片,因冷卻速率快,使得Ti-6Al-4V中Al和V來不及擴散,元素分佈均勻,減少伽凡尼腐蝕,相較於傳統製程以及熱處理後的雙相組織,在SLM製程下的材料具有最佳的抗腐蝕性質。
In this study, Ti-6Al-4V alloy manufactured by selective laser melting (SLM) is investigated. The SLM process is characteristic of layer-by-layer melting and fast cooling which cause the as-SLM materials to bear anisotropic microstructures and properties very different from materials made by traditional process. The 225W laser power and 658 mm/s scanning speed were optimized to form bullk materials of the highest densification. When the powder stacks are molten layer-by-layer in the SLM process, columnar grains grow along thermal gradients, forming β grains along the building direction. Fully acicular α’ martensitic microstructure is then formed on the rapid cooling of molten melts. And disc-shaped pores were often found to form parallel to the additive plane.
Heat treatments were also developed to modify the microstructure and properties of SLM Ti-6Al-4V. By heat treating at temperatures above the 953°C β-transus temperature, the columnar structure is eliminated. The equiaxial β grains greatly reduce anisotropy. With further treatment by hot isostatic pressing (HIP) process, <0.5% porosity from the SLM process is eliminated completely. For hardness test, due to the disc-shaped defects formed with surface parallel to the powder stacking plane, the hardness measured in additive plane is lower than those parallel to the building direciton. However, the HIPed specimens demonstrate the best wear resistant property due to its higher toughness and lower porosity. Thermal diffusivity and thermal conductivity of SLM Ti-6Al-4V shows only little difference along different directions. It was observed that the α’ structure in SLM Ti-6Al-4V demonstrates 21% higher thermal conductivity (6.5 W/mK) than those of traditionally processed specimens (5.36 W/mK). On the other hand, the electrical conductivity is 5.93×105 Ω-1m-1 along the building direction which is 11% higher than the 5.34×105 Ω-1m-1 along its perpendicular directions. Both the microstructures and physical properties become more isotropic after heat treatment. On the corrosion-resistant properties, the as-built SLM Ti-6Al-4V is more corrosition-resistant in comparison with the heat treated or conventionally processed Ti-6Al-4V bearing α+β microstructure. The uniform distribution of aluminum and vanadium in α martensitic microstructure greatly reduce the galvanic effects making the as-SLM materials more corrosion-resistant.
目 錄
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 積層製造 3
2.1.1 簡介 3
2.1.2 製程技術及原理 4
2.1.3 積層製造特性及應用 11
2.2 鈦及其合金 14
2.2.1 簡介 14
2.2.2 合金元素 15
2.2.3 合金分類 19
2.2.4 變形機制 25
2.3 鈦合金(Ti-6Al-4V)顯微組織控制及其熱處理 28
2.3.1 費德曼組織 29
2.3.2 網籃組織 32
2.3.3 等軸組織 32
2.3.4 雙態組織 34
2.3.5 柱狀組織 35
2.4 熱傳導之理論[38] 37
2.4.1 穩態分析法 39
2.4.2 暫態分析法 40
2.5 電化學腐蝕動態極化曲線 45
2.5.1 電化學腐蝕動態極化曲線原理 45
2.5.2 腐蝕機制 48
2.5.3 鈦合金抗腐蝕特性 50
2.6 金屬磨耗理論 51
2.6.1 鈦合金磨耗特性 53
第三章 實驗步驟 56
3.1 實驗材料 56
3.2 實驗流程 58
3.3 SLM製程參數 59
3.4 熱處理 59
3.4.1 一段熱處理 60
3.4.2 多段熱處理 60
3.5 實驗測試與分析 61
3.5.1 顯微組織觀察 61
3.5.2 電子探針微分析 62
3.5.3 X-ray繞射分析 63
3.5.4 密度量測 64
3.5.5 DSC分析 65
3.5.6 熱導率量測 65
3.5.7 電導率量測 67
3.5.8 表面硬度量測 68
3.5.9 表面磨耗軌跡量測 69
3.5.10 磨耗試驗 70
3.5.11 動態電位腐蝕試驗 70
第四章 結果與討論 72
4.1 SLM製程Ti-6Al-4V之顯微組織 72
4.1.1 SLM製程參數對性質之影響 72
4.1.2 SLM製程Ti-6Al-4V顯微組織異向性觀察 77
4.1.3 熱處理對Ti-6Al-4V顯微組織影響 79
4.1.4 HIP對Ti-6Al-4V顯微組織影響 87
4.1.5 X光繞射分析 89
4.2 SLM製程Ti-6Al-4V之機械性質 92
4.2.1 維氏硬度 92
4.2.2 磨耗性質 94
4.3 SLM製程Ti-6Al-4V之物理性質 98
4.3.1 熱傳導性質 98
4.3.2 電導性質 100
4.4 SLM製程Ti-6Al-4V之化學性質 102
4.4.1 SLM製程Ti-6Al-4V之極化曲線 102
第五章 結論 104
參考文獻 105
[1]ASTM, "Standard Terminology for Additive Manufacturing Technologies," Designation: F2792-12a.
[2]P. D. Motevalli and B. Eghbali, "Microstructure and Mechanical Properties of Tri-metal Al/Ti/Mg Laminated Composite Processed by Accumulative Roll Bonding," Materials Science and Engineering A, vol. 628, 2015, pp. 135-142.
[3]D. Banerjee, A. Pilchak, and J. C. Williams, "Processing, Structure, Texture and Microtexture in Titanium Alloys," Materials Science Forum, vol. 710, 2012, pp. 66-84.
[4]R. Müller, J. Abke, E. Schnell, D. Scharnweber, R. Kujat, C. Englert, D. Taheri, M. Nerlich and P. Angele, "Influence of Surface Pretreatment of Titanium- and Cobalt-based Biomaterials on Covalent Immobilization of Fibrillar Collagen," Biomaterials, vol. 27, 2006, 4059-4068.
[5]M. Yamada, "An Overview on the Development of Titanium Alloys for Non-Aerospace Application in Japan," Materials Science and Engineering A, vol. 213, 1996, pp. 8-15.
[6]J. D. Prince, "3D Printing: an Industrial Revolution," Journal of Electronic Resources in Medical Libraries, vol. 11, 2014, pp. 39-45.
[7]S. H. Huang, P. Liu, A. Mokasdar and L. Hou, "Additive Manufacturing and Its Societal Impact: a Literature Review," Int J Adv Manuf Technol, vol.67, 2013, pp. 1191-1203.
[8]蔡佩宜,黃志傑,「客製化3D列印醫材技術之發展趨勢」,工業材料雜誌,第36期,2015,第83-88頁。
[9]W. Gaoa, Y. Zhanga, D. Ramanujana, K. Ramania, Y. Chenc, C. B. Williams, C. C.L. Wange, Y. C. Shin, S. Zhanga and P. D. Zavattieri, "The Status, Challenges, and Future of Additive Manufacturing in Engineering," Computer-Aided Design, vol. 69, 2015, pp. 65-89.
[10]J. Moon, A. C. Caballero, L. Hozer, Y. M. Chiang and M. J. Cima, "Fabrication of Functionally Graded Reaction Infiltrated SiC-Si Composite by Three-Dimensional Printing (3DP™) Process," Materials Science and Engineering A, vol. 298, 2001, pp. 110-119.
[11]S. Naghieh, M. R. Karamooz Ravari, M. Badrossamay, E. Foroozmehr and M. Kadkhodaei, "Numerical Investigation of the Mechanical Properties of the Additive Manufactured Bone Scaffolds Fabricated by FDM: the Effect of Layer Penetration and Post-Heating," Journal of the Mechanical Behavior of Biomedical Materials, vol. 59, 2016, pp. 241-250.
[12]K. Xu and Y. Chen, "Mask Image Planning For Deformation Control in Projectionbased Stereolithography Process," International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, August 12-15, 2012, pp. 1-13.
[13]X. Ma, "Research on Application of SLA Technology in the 3D Printing Technology," Applied Mechanics and Materials, vol. 401-403, 2013, pp. 938-941.
[14]D. Ahn, J. H. Kweona, J. Choi and S. Lee, "Quantification of Surface Roughness of Parts Processed by Laminated Object Manufacturing," Journal of Materials Processing Technology, vol. 212, 2012, pp. 339-346.
[15]R. Ganeriwala and T. Zohdi, "A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering," Springer-Verlag Berlin Heidelberg, vol. 21, 2016, pp. 1-15.
[16]S. L. Sing, J. An, W. Y. Yeong and F. E. Wiria, "Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs," Journal of Orthopaedic Research, vol. 34, 2016, pp.369-385.
[17]S. Zhang, Q. Wei, L. Cheng, S. Li and Y. Shi, "Effects of Scan Line Spacing on Pore Characteristics and Mechanical Properties of Porous Ti6Al4V Implants Fabricated by Selective Laser Melting," Materials and Design, vol. 63, 2014, pp. 185-193.
[18]K. Bassett, R. Carriveau and D. S. K. Ting, "3D Printed Wind Turbines Part 1: Design Considerations and Rapid Manufacture Potential," Sustainable Energy Technologies and Assessments, vol. 11, 2015, pp. 186-193.
[19]A. C. Leon, Q. Chen, N. B. Palaganas, J. O. Palaganas, J. Manapat and R. C. Advincula, "High Performance Polymer Nanocomposites for Additive Manufacturing Applications," Reactive and Functional Polymers, vol. 103, 2016, pp. 141-155.
[20]J. Y. Lee, W. S. Tan, J. An, C. K. Chua, C. Y. Tang, A. G. Fane and T. H. Chong, "The Potential to Enhance Membrane Module Design with 3D Printing Technology," Journal of Membrane Science, vol. 499, 2016, pp. 480-490.
[21]M. K. Dimah, F. D. Albeza, V. A. Borrás and A. I. Muñoz, "Study of the Biotribocorrosion Behaviour of Titanium Biomedical Alloys in Simulated Body Fluids by Electrochemical Techniques," Wear, vol. 294-295, 2012, pp. 409-418.
[22]M. Peters and C. Leyens, Titanium and Titanium Alloys, Germany: WILEY-VCH GmbH & Co. KGaA, 2003, pp. 1-36.
[23]R. Pederson, "Microstructure and Phase Transformation of Ti-6Al-4V," Licentiate thesis, Vol. 30, 2002, pp. 1-31.
[24]M. J. Donachie, Titanium: A Technical Guide, 2nd ed., USA: ASM International, 2000, pp. 1-381.
[25]賴耿陽,金屬鈦理論與應用,台灣:復漢出版社,1990年,第36頁。
[26]洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,2013,第12-22頁。
[27]W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 8th ed., Asia: John Wiley & Sons, 2011, p. 203.
[28]I. Shin and E. A. Carter, "Orbital-Free Density Functional Theory Simulations of Dislocations in Magnesium," Modelling and Simulation in Materials Science and Engineering, vol. 20, 2012, pp. 1-23.
[29]H. Beladi, Q. Chao and G. S. Rohrer, "Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy," Acta Materialia, vol. 80, 2014, pp. 478-489.
[30]ASM, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, USA: ASM International, 1990, pp. 586-647.
[31]S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik and O.Ivasishun, "Influence on Texture on Beta Grain Growth During Contiuous Annealing of Ti-6Al-4V," Materials Science and Engineering A, vol. 299, 2001, pp. 225-234.
[32]H. J. Rack and J. I. Qazi, "Titanium Alloys for Biomedical Applications," Materials Science and Engineering C, vol. 26, 2006, pp. 1269-1277.
[33]G. Lutjering and J. C. Williams, Titanium: Engineering Materials and Processes, 2nd ed., New York: Springer-Verlag Berlin Heidelberg, 2007, pp. 203-250.
[34]T. Ahmed and H. J. Rack, "Phase Transformations during Cooling in α+β Titanium Alloys," Materials Science and Engineering A, vol. 243, 1998, pp. 206-211.
[35]W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt and M. Qian, "Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties," JOM, Vol. 67, 2015, pp. 668- 673.
[36]B. Vrancken, L. Thijs, J. P. Kruth and J. V. Humbeeck, "Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties," Journal of Alloys and Compounds, vol. 541, 2012, pp. 177-185.
[37]R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, "Influence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimodal vs. Lamellar Structures," Metallurgical and Materials Transactions A, vol. 33, 2002, pp. 899-918.
[38]洪連輝、劉立基、魏榮君,固態物理學導論,台灣:高立圖書有限公司,1997年,第145-147頁。
[39]R. E. Newnham, Properties of Materials, USA: Oxford University Press, 2005, chapter18.
[40]J. S. Dugdale, D. K. C. Macdonald, "Lattice Thermal Conductivity," Physical Review, vol. 98, 1955, pp. 1751-1752.
[41]黃昌偉,陶瓷材料之熱性質分析,精密陶瓷特性及檢測分析,第10.1-10.54頁.
[42]W. S. Robert and G. L. Thomas, Process Heat Transfer, 2nd ed., USA: Elsevier Inc, 2014, pp. 1-30.
[43]P. S. Gaal, M. A. Thermitus and D. E. Stroe, "Thermal Conductivity Measurements Using the Flash Method," Journal of Thermal Analysis and Calorimetry, Vol. 78, 2004, pp. 185-189.
[44]M. A. Rehman and A. Maqsood, "Measurement of Thermal Transport Properties with an Improved Transient Plane Source Technique," International Journal of Thermophysics, Vol. 24, 2003, pp. 867-883.
[45]S. Krenek, K. Anhalt, A. Lindemann, C. Monte, J. Hollandt, J. Hartmann, "A Study on the Feasibility of Measuring the Emissivity with the Laser-Flash Method," Int J Thermophys, Vol 31, 2010, pp. 998-1010.
[46]J. Szałapak, K. Kiełbasiński, J. Krzemiński, A. Młożniak, E. Zwierkowska, M. Jakubowska and R. Pawłowski, "A Method of Calculating Thermal Diffusivity and Conductivity for Irregularly Shaped Specimens in Laser Flash Analysis," Metrol. Meas. Syst., Vol. XXII, 2015, pp. 521-530.
[47]R. Ding, J. Jiang and T. Gui, "Study of Impedance Model and Water Transport Behavior of Modified Solvent-Free Epoxy Anticorrosion Coating by EIS," J. Coat. Technol. Res., vol. 13, 2016, pp. 501-515.
[48]田福助,電化學理論與應用,台灣:高立圖書,2014年,第167-450頁。
[49]E. Poorqasemi, O. Abootalebi, M. Peikari and F. Haqdar, "Investigating Accuracy of the Tafel Extrapolation Method in HCl Solutions," Corrosion Science, vol. 51, 2009, pp. 1043-1054.
[50]K. A. Natarajan, Advances in Corrosion Engineering, IISc Bangalore, NPTEL Web Course, Lecture. 10, pp. 1-8.
[51]熊楚強、王月,電化學,台灣:新文京開發,2008年,第399-421頁。
[52]E. Vasilescu, P. Drob, D. Raducanu, I. Cinca, D. Mareci, J. M. C. Moreno, M. Popa, C. Vasilescu and J. C. M. Rosca, "Effect of Thermo-Mechanical Processing on the Corrosion Resistance of Ti6Al4V Alloys in Biofluids," Corrosion Science, vol. 51, 2009, pp. 2885-2896.
[53]T.S. Eyre, "Wear Characteristics of Metals," Tribology International, Vol. 9, 1976, pp. 203-212.
[54]劉家竣,材料磨損原理及其耐磨性,北京:清華大學出版社,1993,第11頁。
[55]邱雲堯、陳佳萬、張安欣,機械製造,台灣:文京圖書,1998年,第32頁。
[56]邵荷生、張清,金屬的磨料磨損與耐磨材料,北京:機械工業出版社,1988年。
[57]邵荷生、曲敬信,摩擦與磨損,北京:煤炭工業出版社,1992年。
[58]A. Molinari, G. Straffelini, B. Tesi and T. Bacci, "Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy," Wear, vol. 208, 1997, pp. 105-112.
[59]G. Straffelini and A. Molinari, "Dry Sliding Wear of Ti-6Al-4V Alloy as Influenced by the Counterface and Sliding Conditions," Wear, vol. 236, 1999, pp. 328-338.
[60]M. O. Alam and A. S. M. A. Haseeb, "Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear against Hardened Steel," Tribology International, vol. 35, 2002, pp. 357-362.
[61]ASTM, "Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure," Designation: C830-00.
[62]ASTM, "Standard Test Method for Thermal Diffusivity by the Flash Method," Designation: E1461-07.
[63]ASTM, "Standard Test Method for Vickers Hardness of Metallic Materials," Designation: E92-82.
[64]ASTM, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," Designation: G99-03.
[65]ASTM, "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements," Designation: G59-97.
[66]C. Qiu, S. Yue, N. J. E. Adkins, M. Ward, H. Hassanin, P. D. Lee, P. J. Withers and M. M. Attallah, "Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting," Materials Science and Engineering A, vol. 628, 2015, pp.188-197.
[67]L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck and J. P. Kruth, "A Study of the Microstructural Evolution during Selective Laser Melting of Ti-6Al-4V," Acta Materialia, vol. 58, 2010, pp. 3303-3312.
[68]M. Gelfi, A. Attanasio, E. Ceretti, A. Garbellini and A. Pola, "Micromilling of Lamellar Ti6Al4V: Cutting Force Analysis," Materials and Manufacturing Processes, vol. 31, 2016, pp. 919-925.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top