(18.206.238.77) 您好!臺灣時間:2021/05/17 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴邦新
研究生(外文):Pang-Hsin Lai
論文名稱:選擇性雷射熔融Ti-6Al-4V合金之微結構及機械性質研究
論文名稱(外文):Microstructure and Mechanical Properties of Selective Laser Melting Ti-6Al-4V Alloy
指導教授:吳明偉
指導教授(外文):Ming-Wei Wu
口試委員:殳國俊黃坤祥陳貞光
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:異向性機械性質顯微組織選擇性雷射熔融積層製造Ti-6Al-4V
外文關鍵詞:anisotropymechanical propertiesmicrostructureselective laser meltingadditive manufacturingTi-6Al-4V
相關次數:
  • 被引用被引用:5
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積層製造是一種可以直接製造出近淨形成品的新興材料製造技術,又被稱做3D列印。有別於需要大量加工的減法式製程,積層製造技術以層層堆疊的方式製造出成品,不僅省去了加工成本,且適合用於製造形狀複雜或是具有內部構造的材料。在眾多的積層製造技術中,又以選擇性雷射熔融製程(selective laser melting, SLM)被廣泛地應用於金屬材料的製造,但由於選擇性雷射熔融法製造之材料普遍具有明顯的組織異向性以及較差的延性、韌性,在各領域的應用上仍備受挑戰。因此,本研究針對SLM Ti-6Al-4V合金的顯微組織及機械性質進行了一系列的研究及探討,並且藉由熱處理改善顯微組織及機械性質的異向性。
  研究結果顯示Ti-6Al-4V合金的x-y、y-z截面組織分別以等軸晶及柱狀晶為主,且V(vertical)、H(horizontal)試片在機械性質的表現上具有明顯的異向性,H試片之抗彎強度、衝擊能分別高於V試片達48%、100%。透過破斷面觀察及缺陷型態分析,證實機械性質的異向性主要由未完全熔接之圓盤狀積層缺陷所主導。SLM製程的高冷卻速率導致合金中形成α相,進而使材料延性、韌性皆不如傳統鑄造、鍛造之Ti-6Al-4V合金,因此本研究後續進行了不同溫度的熱處理,藉此改善SLM Ti-6Al-4V合金的機械性質。
  提高熱處理溫度會導致α相粗化並且使β相含量增多,而SLM Ti-6Al-4V合金的延性、韌性亦會隨著β相含量增多而提升,硬度及拉伸強度則會隨之下降。750˚C、850˚C熱處理試片的延性及韌性已有些微改善。950˚C熱處理雖然無法使柱狀晶轉變為等軸型態,但是已使合金的延性、韌性大幅提升。相較於950˚C熱處理試片,1050˚C熱處理試片的延性進一步地提升,而衝擊韌性則是呈現不增反減的趨勢。一般熱處理雖然可以改變組織型態但無法有效消除積層缺陷。1000˚C熱均壓處理後試片內部的積層缺陷已幾乎被消除,但因熱均壓處理過程中所引發之滲碳現象使試片伸長率不如預期。
Additive manufacturing (AM), which is also known as 3D printing, is a promising industrial technique for fabricating near net-shaped products. AM process is to manufacture a material layer by layer and is obviously different from the traditional processes. It can reduce the cost for machining and can be used to fabricate the materials with complex shapes and architectures. Selective Laser Melting (SLM) is the most popular AM process for metallic materials among the various AM techniques. However, materials fabricated by SLM still show relatively high hardness but inferior ductility and toughness due to high cooling rate after SLM. Therefore, this study aimed at investigating the relationship between microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by SLM. Various heat treatment was used to improve the anisotropies in the microstructure and mechanical properties in this study.
The results showed that the microstructures on the x-y and y-z sections were equiaxed and columnar grains, respectively. The mechanical properties of the V and H specimens were significantly different. The Transverse rupture strength (TRS) and impact energy of H specimen are higher than those of V specimen by 48% and 100%, respectively. According to the observation on the fracture surfaces and building defects, it can be found that the anisotropies in mechanical properties were caused by disc-shaped building defects. Martensitic α phase formed by extremely high cooling rate after SLM process causes high tensile strength but low ductility and toughness.
Increasing the temperature for heat treatment induced the coarsening of α phase and increment in the fraction of β phase. The ductility and toughness were improved with increasing the fraction of β phase, though the hardness and tensile strength were decreased. The mechanical properties were slightly improved after heat treatment at 750˚C and 850˚C. The mechanical properties were much improved after heat treatment at 950˚C for two hours, though columnar grains cannot turn into equiaxied ones. Moreover, the ductility was further increased and the toughness was impaired after 1050˚C heat treatment. Building defects can be eliminated after HIP treatment, but carburization might result in the low elongations of V and H specimens.
第一章 緒論 1
第二章 文獻回顧 3
2.1 傳統鈦合金 3
2.1.1 合金元素 4
2.1.2 介穩相 5
2.1.3 顯微組織 7
2.2 積層製造原理及種類 8
2.3 SLM Ti-6Al-4V合金之顯微組織 11
2.3.1 SLM Ti-6Al-4V合金特有的微結構型態 11
2.3.2 製程參數對緻密化程度的影響 14
2.3.3 製程參數對顯微組織型態的影響 16
2.4 SLM Ti-6Al-4V合金之機械性質及破壞行為分析 18
2.4.1 SLM Ti-6Al-4V合金之拉伸性質 18
2.4.2 SLM Ti-6Al-4V合金之疲勞性質 20
2.5 熱處理對SLM Ti-6Al-4V合金的影響 24
2.5.1顯微結構 24
2.5.2 機械性質及破壞行為分析 28
第三章 實驗流程 33
3.1 粉末特性分析 34
3.2 試片製作及處理 34
3.3 截面金相 37
3.4 XRD分析 37
3.5 成分分佈分析 37
3.6 密度量測 38
3.7 機械性質 38
3.7.1 硬度試驗 38
3.7.2 拉伸試驗 38
3.7.3 彎曲試驗 39
3.7.4 衝擊試驗 40
3.8 破壞行為分析 40
3.9 斷層掃描分析 40
3.10 實驗儀器 41
第四章 結果與討論 42
4.1 選擇性雷射熔融試片之顯微組織及相結構分析 42
4.1.1 金相觀察 42
4.1.2 XRD分析 44
4.1.3 成分分佈分析 44
4.2 選擇性雷射熔融試片之機械性質及破壞行為分析 46
4.2.1 機械性質 46
4.2.2 破斷面觀察及分析 46
4.2.3 缺陷型態及破壞行為分析 49
4.3熱處理試片之顯微組織及相結構分析 52
4.3.1 金相觀察 52
4.3.2 XRD分析 55
4.3.3 成分分佈分析 59
4.3.4 斷層掃描分析 63
4.4 熱處理試片之機械性質及破壞行為分析 65
4.4.1 機械性質 65
4.4.2 破斷面觀察及分析 68
4.4.3 破壞行為分析 71
4.5 熱均壓試片之顯微組織及相結構分析 73
4.5.1 金相觀察 73
4.5.2 XRD及成分分佈分析 75
4.5.3 斷層掃描分析 77
4.6熱均壓試片之機械性質及破壞行為分析 78
第五章 結論 85
參考文獻 87
[1]D. A. Hollander, M. V. Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, and Hans-Josef Erli, “Structural, Mechanical and in Vitro Characterization of Individually Structured Ti–6Al–4V Produced by Direct Laser Forming”, Biomaterials, 2006, Vol. 27, pp. 955-963.
[2]Standard Terminology for Additive Manufacturing Technologies, ASTM, Designation: F2792 - 12a, 2012.
[3]B. Vrancken, L. Thijs, J. P. Kruth, and J. V. Humbeeck, “Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties”, Journal of Alloys and Compounds, 2012, Vol. 541, pp. 177-185.
[4]T. Vilaro, C. Colin, and J. D. Bartout, “As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting”, Metallurgical and Materials Transactions A, 2011, Vol. 42A, pp. 3190-3199.
[5]X. L. Zhao, S. J. Li, M. Zhang, Y. D. Liu, T. B. Sercombe, S. G. Wang, Y. L. Hao, R. Yang , and L. E. Murr, “Comparison of The Microstructures and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting and Electron Beam Melting”, Materials and Design, 2016, Vol. 95, pp. 21-31.
[6]M. Simonelli, Y. Y. Tse, and C. Tuck, “Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V”, Materials Science & Engineering A, 2014, Vol. 616, pp. 1-11.
[7]C. Qiu, N. J. E. Adkins, and M. M. Attallah, “Microstructure and Tensile Properties of Selectively Laser-melted and of HIPed Laser-melted Ti–6Al–4V”, Materials Science & Engineering A, 2013, Vol. 578, pp. 230-239.
[8]W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, “Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in situ Martensite Decomposition”, Acta Materialia, 2015, Vol. 85, pp. 74-84.
[9]M. Shunmugavel, A. Polishetty, and G. Littlefair, “Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars”, Procedia Technology, 2015, Vol. 20, pp. 231-236.
[10]A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers, “Mechanical Properties of Alloy Ti–6Al–4V and of Stainless Steel 316L Processed by Selective Laser Melting: Influence of Out-of-equilibrium Microstructures”, Powder Metallurgy, 2014, Vol. 57, No. 3, pp. 184-189.
[11]P. Edwards and M. Ramulu, “Fatigue Performance Evaluation of Selective Laser Melted Ti–6Al–4V”, Materials Science & Engineering A, 2014, Vol. 598, pp. 327-337.
[12]S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance”, International Journal of Fatigue, 2013, Vol. 48, pp. 300-307.
[13]G. Nicoletto, “Anisotropic High Cycle Fatigue Behavior of Ti–6Al–4V Obtained by Powder Bed Laser Fusion”, International Journal of Fatigue, 2016, doi:10.1016/j.ijfatigue.2016.04.032
[14]Q. Liu, J. Elambasseril, S. J. Sun, M. Leary, M. Brandt, and P. K. Sharp, “The Effect of Manufacturing Defects on The Fatigue Behaviour of Ti-6Al-4V Specimens Fabricated Using Selective Laser Melting”, Advanced Materials Research, 2014, Vol. 891-892, pp. 1519-1524.
[15]W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M. Qian, “Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties”, JOM, 2015, Vol. 67, No. 3, pp. 668-673.
[16]M. Simonelli, Y. Y. Tse, and C. Tuck, “On the Texture Formation of Selective Laser Melted Ti-6Al-4V”, Metallurgical and Materials Transactions A, 2014, Vol. 45A, pp. 2863-2872.
[17]C. Leyens and M. Peters, “Titanium and Titanium Alloys”, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
[18]“Titanium Alloy Guide”, RTI International Metals Inc. Company, 2000.
[19]Q. Wang, C. Dong, and P. K. Liaw, “Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α+β)] Phase-Boundary Slopes”, Metallurgical and Materials Transactions A, 2015, Vol. 46A, pp. 3440-3447.
[20]S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, and D.B. Miracle, “Microstructure and Texture Evolution during β Extrusion of Boron Modified Ti-6Al-4V Alloy”, Materials Science and Engineering A, 2012, Vol. 540, pp. 152-163.
[21]A. Sarkar, S. Roy, and S. Suwas, “X-ray Diffraction Line Profile Analysis of Deformation Microstructure in Boron Modified Ti–6Al–4V Alloy”, Materials Characterization, 2011, Vol. 62, pp. 35-42.
[22]S. Tamirisakandala, R. B. Bhat, D. B. Miracle, S. Boddapati, R. Bordia, R. Vanover, and V. K. Vasudevan, “Effect of Boron on the Beta Transus of Ti–6Al–4V Alloy”, Scripta Materialia, 2005, Vol. 53, pp. 217-222.
[23]Y. T. Lee and G. Welsch, “Youngs Modulus and Damping of Ti-6AI-4V Alloy as a Function of Heat Treatment and Oxygen Concentration”, Materials Science and Engineering A, 1990, Vol. 128, pp. 77-89.
[24]S. K. Sikka, Y. K. Vohra, and R. Chidambaram, “Omega Phase in Materials”, Progress in Materials Science, 1982, Vol. 27, pp. 245-310.
[25]B. S. Hickman, “The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review”, Journal of Materials Science, 1969, Vol. 4, pp. 554-563.
[26]T. Ahmed and H. J. Rack, “Phase Transformations during Cooling in α+β Titanium Alloys”, Materials Science and Engineering A, 1998, Vol. 243, pp. 206-211.
[27]F. J. Gil, M. P. Ginebra, J. M. Manero, and J. A. Planell, “Formation of α-Widmanstatten Structure: Effects of Grain Size and Cooling Rate on the Widmanstatten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy”, Journal of Alloys and Compounds, 2001, Vol. 329, pp. 142-152.
[28]A. A. Salem, J. B Shaffer, D. P. Satko, S. L. Semiatin, and S. R. Kalidindi, “Workflow for Integrating Mesoscale Heterogeneities in Materials Structure with Process Simulation of Titanium Alloys”, Integrating Materials and Manufacturing Innovation, 2014, pp. 3-24.
[29]D. D. Gu and Y. F. Shen, “Balling Phenomena during Direct Laser Sintering of Multi-component Cu-based Metal Powder”, Journal of Alloys and Compounds, 2007, Vol. 432, pp. 163-166.
[30]X. Zhou, X. H. Liu, D. D. Zhang, Z. J. Shen, and W. Liu, “Balling Phenomena in Selective Laser Melted Tungsten”, Journal of Materials Processing Technology, 2015, Vol. 222, pp. 33-42.
[31]潘琰峰,沈以赴,顾冬冬,杨家林,王 洋, 「316不锈钢粉末直接激光烧结的球化效应」,中国机械工程,第16卷,第17期,2005,第1573-1576頁。
[32]W. W. He, W. P. Jia, H. Y. Liu, H. P. Tang, X. T. Kang, and Y. Huang, “Research on Preheating of Titanium Alloy Powder in Electron Beam Melting Technology”, Rare Metal Materials and Engineering, 2011, Vol. 40, No. 12, pp. 2072-2075.
[33]H. J. Gong, K. Rafi, H. F. Gu, T. Starr, and B. Stucker, “Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes”, Additive Manufacturing, 2014, Vol. 1-4, pp. 87-98.
[34]L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, “A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V”, Acta Materialia, 2010, Vol. 58, pp. 3303-3312.
[35]E. Sallica-Leva, R. Caram, A. L. Jardini, and J. B. Fogagnolo, “Ductility Improvement due to Martensite α′ Decomposition in Porous Ti–6Al–4V Parts Produced by Selective Laser Melting for Orthopedic Implants”, Journal of the Mechanical Behavior of Biomedical Materials, 2016, Vol. 54, pp. 149-158.
[36]C. D. Formanoir, S. Michotte, O. Rigo, L. Germain, and S. Godet, “Electron Beam Melted Ti–6Al–4V: Microstructure ,Texture and Mechanical Behavior of the As-built and Heat-treated Material”, Materials Science & Engineering A, 2016, Vol. 652, pp. 105-119.
[37]A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, “On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting”, Engineering Fracture Mechanics, 2014, Vol. 120, pp. 15-25.
[38]G. Rolink and S. Vogt, “Laser Metal Deposition and Selective Laser Melting of Fe–28 at.% Al”, Journal of Materials Research, 2014, Vol. 29, No. 17, pp. 2036-2043.
[39]K. Kunze, T. Etter, J. Grässlin, and V. Shklover, “Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM)”, Materials Science & Engineering A, 2015, Vol. 620, pp. 213-222.
[40]S. Li, Q. S. Wei, Y. S. Shi, Z. C. Zhu, and D. Q. Zhang, “Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting”, Journal of Materials Science & Technology, 2015, Vol. 31, pp. 946-952.

[41]Y. Kajima, A. Takaichi, T. Nakamoto, T. Kimura, Y. Yogo, M. Ashida, H. Doi, N. Nomura, H. Takahashi, T. Hanawa, and N. Wakabayashia, “Fatigue Strength of Co–Cr–Mo Alloy Clasps Prepared by Selective Laser Melting”, Journal of the Mechanical Behavior of Biomedical Materials, 2016, Vol. 59, pp. 446-458.
[42]Y. Sato, M. Tsukamoto, and Y. Yamashita, “Surface Morphology of Ti–6Al–4V Plate Fabricated by Vacuum Selective Laser Melting”, Applied Physics B, 2015, Vol. 119, pp. 545-549.
[43]X. Zhou, D. Z. Wang, X. H. Liu a, D. D. Zhang, S. L. Qu, J. Ma, G. London, Z. J. Shen, and W. Liu, “3D-imaging of Selective Laser Melting Defects in a Co–Cr–Mo Alloy by Synchrotron Radiation Micro-CT”, Acta Materialia, 2015, Vol. 98, pp. 1-16.
[44]D. D. Gu and Y. F. Shen, “Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods”, Materials and Design, 2009, Vol. 30, pp. 2903-2910.
[45]B. Ahuja, A. Schaub, M. Karg, M. Lechner, M. Merklein, and M. Schmidt, “Developing LBM Process Parameters for Ti-6Al-4V Thin Wall Structures and Determining the Corresponding Mechanical Characteristics”, Physics Procedia, 2014, Vol. 56, pp. 90-98.
[46]L. E. Murr, E. Martinez, J. Hernandez, S. Collins, K. N. Amato, S. M. Gaytan, and P. W. Shindo, “Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting”, Journal of Materials Research and Technology, 2012, Vol. 1, No. 3 , pp. 167-177.
[47]T. S. Kim, Y. G. Park, and M. Y. Wey, “Characterization of Ti–6Al–4V Alloy Modified by Plasma Carburizing Process”, Materials Science & Engineering A, 2003, Vol. 361, pp. 275-280.
[48]Y. G. Park, M. Y. Wey, and S. I. Hong, “Enhanced Wear and Fatigue Properties of Ti-6Al-4V Alloy Modified by Plasma Carburizing/CrN Coating”, Journal of Materials Science: Materials in Medicine, 2007, Vol. 18, pp. 925-931.
[49]Y. Luo, S. Ge, H. T. Liu, and Z. M. Jin, “Microstructure Analysis and Wear Behavior of Titanium Cermet Femoral Head with Hard TiC Layer”, Journal of Biomechanics, 2009, Vol. 42, pp. 2708-2711.
[50]Y. Ina, G. Stephen, H. Danie, and Y. Igor, “Residual Stress in SLM Ti6Al4V Alloy Specimens”, Materials Science Forum, 2015, Vol. 828-829, pp. 305-310.
[51]Standard Specification for Titanium and Titanium Alloy Bars and Billets, ASTM, Designation: B348 - 12, 2013.
[52]B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, “Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting”, Acta Materialia, 2014, Vol. 68, pp. 150-158.
電子全文 電子全文(網際網路公開日期:20210823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top