(3.80.6.131) 您好!臺灣時間:2021/05/15 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張景淮
研究生(外文):Ching-Huai Chang
論文名稱:粉末不銹鋼之液相燒結行為及顯微組織觀察
論文名稱(外文):Liquid phase sintering and microstructure of powder metallurgy stainless steel
指導教授:吳明偉
指導教授(外文):Ming-wei Wu
口試委員:張世穎曹龍泉張世賢吳明偉
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:熱分析顯微組織不銹鋼液相燒結
外文關鍵詞:thermal analsismicrostructureliquid phase sinteringstainless steelBoron
相關次數:
  • 被引用被引用:4
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硼對於鐵基合金鋼粉末而言已被許多報導證實為良好的液相燒結元素,由於硼與基地相元素進行共晶反應所生成之液體有優異的潤濕性可助基礎粉末重新緊密排列。然而文獻也指出硼之液相燒結行為與合金系統之元素種類與含量關聯甚鉅,故不同成分系統中其燒結行為與顯微組織皆可能有所不同。本實驗主軸欲使用液相燒結進行兩種常見不銹鋼之緻密化,不銹鋼分別為304L與410L合金系統,實驗中以三種硼含量(0.0wt%、0.3wt%與0.6wt%)與氣氛(Ar、H2、Ar-H2)作為參數以尋找最佳參數。
本研究結果顯示碳含量將左右含硼410L不銹鋼之顯微結構。以氬氣作為燒結氣氛時,合金中之碳原子會有擴散至晶界處的趨勢,進而使麻田散鐵形成於晶界附近。然而選用氫氣作為燒結氣氛,極少量的碳原子則傾向平均散佈於基地相之中。燒結氣氛對304L基地相顯微組織影響不大。本實驗藉由熱分析得知鉻與鎳皆會大幅提升合金系統之液相生成溫度,410L提升到1236 oC至1248 oC之間,304L則是提高至1244oC~1277oC。元素分佈則顯示兩不銹鋼中之硼化物化學組成皆以鐵、鉻、硼為主。
燒結密度的部分,在1250oC燒結溫度中添加0.6wt%硼的410L不銹鋼在氫氣中燒結可得到最佳密度7.48 g/cm3,溫度升至1300oC對410L合金之密度提升有限。由於 304L之液相生成溫度較高之故,以致加入0.6wt%硼的304L在1300oC中才能達到優異之燒結緻密度,其燒結密度為7.75g/cm3。此外,加入0.6wt%硼粉均可提升提升304L與410L合金之抗腐蝕性。
Boron is an effective alloying element for promoting liquid phase sintering of iron-based powder metallurgy (PM) steels. Boron can react with iron to form eutectic liquid, which provide good wettability and help the particle arrangement. Numerous studies have indicated that the alloy system and element can obviously affect liquid phase sintering, and the sintering behavior and microstructure in various PM steels could be different. This research was to study the densification of PM stainless steels including 304L and 410L by liquid phase sintering. The effects of boron content (0.0 wt%, 0.3 wt%, and 0.6 wt%) and sintering atmospheres (Ar, H2, and Ar-H2) on the liquid phase sintering and microstructure were investigated.
The results showed that carbon plays a key role in determining the martix of 410L+B steel. When the 410L+B steel were sintered in argon, carbon atom could tend to diffuse to grain boundary, and martensite was formed near grain boundary after sintering. However, sintering in hydrogen, no preferred segregation of carbon atom could be found. In contrast, the sintering atmosphere does not affect the matrix of 304L+B steel. The results of thermal analysis showed that both chromium and nickel can much raise the temperature for eutectic liquid formation. The ranges for liquid generations in 410L+B and 304L+B systems were 1236 oC~1248 oC and 1244 oC~1277 oC, respectively. The borides in the two stainless steels are rich in boron, iron, and chromium, as demonstrated by elemental mappings.
The highest sintered density of 410L+0.6B steel is 7.48 g/cm3 when the steel is sintered at 1250oC in hydrogen. The further increase in the sintering temperature to 1300oC does not apparently increase the sintered density. However, in the 304L+0.6wt%B steel, superior densification can be only achieved after sintering at 1300oC, and the highest sintered density is 7.75g/cm3. On the other hand, the 0.6 wt% B additive could improve the corrosion resistances of 304L and 410L steels.
第一章 前言 1
第二章 文獻回顧 3
2.1 粉末冶金簡介 3
2.2 粉末不銹鋼簡述 6
2.2.1 肥粒鐵系不銹鋼 6
2.2.2 沃斯田鐵系不銹鋼 7
2.2.3 麻田散鐵系不銹鋼 8
2.2.4 析出硬化型不銹鋼 8
2.2.5 雙相不銹鋼 8
2.3 硼於純鐵與鐵基合金鋼之液相燒結 9
2.3.1 液相燒結 9
2.3.2 硼於純鐵之液相燒結 10
2.3.3 Fe-Mo系統 14
2.3.4 Fe-Cr系統 14
2.4 沃斯田鐵系不銹鋼之液相燒結 22
2.5 肥粒鐵系不銹鋼中之液相燒結 35
2.6 其他不銹鋼之液相燒結 39
第三章 研究內容與實驗步驟 42
3.1 實驗設計 42
3.2 粉末混合及壓製生胚 45
3.3 燒結 45
3.4 燒結密度量測 45
3.6 硼化物成分鑑定與合金元素分佈 46
3.7 熱分析 46
3.8 量測儀器 47
第四章 結果與討論 48
4.1 含硼410L不銹鋼之顯微組織與合金元素分佈 48
4.1.1 氫氣燒結 48
4.1.2 氬氣燒結 50
4.1.3 Ar-H2燒結 52
4.1.4 合金元素分佈 54
4.2 溫度對含硼410L不銹鋼顯微結構之影響 60
4.2.1 氬氣環境下以1200oC燒結 60
4.2.2 真空環境下以1300oC燒結 62
4.3 含硼410L不銹鋼之緻密化情形 65
4.3.1 熱分析 65
4.3.2 密度之比較 67
4.4 含硼410L不銹鋼之硬度與動電位極化曲線 69
4.4.1 硬度之比較 69
4.4.2 動電位極化曲線 70
4.5 含硼304L不銹鋼之顯微組織與合金元素分佈 72
4.5.1 氫氣燒結氣氛 72
4.5.2 氬氣燒結氣氛 74
4.5.3 Ar-10%H2燒結氣氛 76
4.5.4 合金元素分佈 78
4.6 含硼304L不銹鋼之緻密化情形 79
4.6.1 熱分析 79
4.6.2 燒結溫度1300oC對密度之影響 80
4.6.3 密度之比較 82
4.7 含硼304L不銹鋼之硬度與極化曲線 83
4.7.1 硬度之比較 83
4.7.2 動電位極化曲線 85
第五章 結論 87
參考文獻 88
[1]鄭國華,“鋼鐵材料設計與應用”,中國礦冶工程協會,1996。
[2]黃坤祥,“粉末冶金學”,中華民國粉末冶金協會,2008。
[3]W. F. Wang, “Effect of MnS powder addition and sintering temperature on the corrosion resistance of sintered 303LSC stainless steels”, Corrosion Science, 2003, Vol. 45, pp. 957-966.
[4]M. M. Dewidar, H. C. Yoon, and J. K. Lim, “Mechanical Properties of Metals for Biomedical Applications Using Powder Metallurgy Process: A Review”, METALS AND MATERIALS International, 2006, Vol. 12, pp. 193-206.
[5]K. H. W. Seah, R. Thampuran, and S. H. Teoh, “The influence of pore morphology on corrosion”, Corrosion Science, 1998, Vol. 40, pp. 547-556.
[6]A. Dudek, and R. Włodarczyk, “Effect of sintering atmosphere on properties of porous stainless steel for biomedical applications”, Materials Science and Engineering C, 2013, Vol. 33, pp. 434-439.
[7]R. M. German, “Powder Metallurgy Science”, Metal Powder Industries Federation, 1994.
[8]M. Sarasola, T. Gómez-Acebo, and F. Castro, “Microstructural development during liquid phase sintering of Fe and Fe–Mo alloys containing elemental boron additions.”, Powder Metallurgy, 2005, Vol. 48, pp. 59-67.
[9]M. W. Wu, “The influences of carbon and molybdenum on the progress of liquid phase sintering and the microstructure of boron-containing powder metallurgy steel”, Metallurgical and Materials Transactions A, 2015, Vol. 46, pp. 467-475.
[10]M. W. Wu, Y. C. Fan, H. Y. Huang, and W. Z. Cai, “Liquid phase sintering of boron-containing powder metallurgy steel with chromium and carbon”, Metallurgical and Materials Transactions A, 2015, Vol. 46, pp. 5285-5295.
[11]D. Krecar, V. Vassileva, H. Danninger, and H. Hutter, “Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS”, Analytical and Bioanalytical Chemistry, 2004, Vol. 379, pp. 605-609.
[12]A. Molinari, J. Kazior, F. Marchetti, R. Canteri, I. Cristofolini, and A. Tiziani, “intering mechanisms of born alloyed AISI 316L stainless steel” Powder Metallurgy, 1994, Vol. 37, pp. 115-122.
[13]M. Skałon, J. Kazior, “Enhanced sintering of austenitic stainless steel powder AISI 316L through boron containig master alloy addition”, Archives of Metallurgy and Materials , 2012, Vol. 57, pp. 789-797.
[14]C. Menapace, A. Molinari, J. Kazior, and T. Pieczonka, “Surface self-densification in boron alloyed austenitic stainless steel and its effect on corrosion and impact resistance”, Powder Metallurgy, 2007, Vol. 50, pp. 326-335.
[15]L. Lozada and F. Castro, “Controlled densification of boron-containing stainless steels”, Advances in Powder Metallurgy & Particulate Materials, MPIF, 2011, Vol. 241, pp. 305-311.
[16]J. A. C. Miramontes, J. D. O. B. Sánchez, F. A. Calderón, A. M. Villafañe, and J. G. C. Nava, “Effect of boron additions on sintering and densification of a ferritic stainless steel”, Journal of Materials Engineering and Performance, 2009, Vol. 19, pp. 880-884.
[17]J. Kazior, M. Nykiel, T. Pieczonka, T. Marcu Puscas, and A. Molinari, “Activated sintering of P/M duplex stainless steel powders”, Journal of Materials Processing Technology, 2004, Vol. 157-158, pp. 712-717.
[18]H. Ö. Gülsoy and S. Salman, “Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions”, Journal of Materials Science, 2005, Vol. 40, pp. 3415-3421.
[19]K.S. Narasimhan, “Sintering of powder mixtures and the growth of ferrous powder metallurgy”, Materials Chemistry and Physics, 2001, Vol. 67, pp56-65.
[20]Höganäs Handsbook For Machining Guidelines, Höganäs AB, Swenden, 2004.
[21]董基良, “鋼鐵材料”,三民書局,1988。
[22]R. W. K. Honeycombe, and H. K. D. H. Bhadeshia, 蔡明欽譯,“鋼-顯微組織與性能”,五南圖書書出版股份有限公司,2004。
[23]E. Klar and P. Samal, “Powder Metallurgy Stainless Steels”, ASM International, 2007.
[24]R. M. German, P. Suri, and S. J. Park, “ Review: Liquid Phase Sintering”, Journal of Materials Science, 2009, Vol.44, pp. 1-39.
[25]林秉豪,“高強度粉末合金鋼之衝擊韌性與疲勞性質之研究”,碩士論文,國立虎尾科技大學,2012。
[26]黃贈凱,“射出成形17-4PH不鏽鋼之顯微組織及機械性質研究”,碩士論文,國立虎尾科技大學,2014。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top