(3.236.214.19) 您好!臺灣時間:2021/05/07 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡文章
研究生(外文):Wen-Zhang Cai
論文名稱:鎳含量對含硼粉末合金鋼之液相燒結與顯微結構的效應
論文名稱(外文):The influences of Ni content on the liquid phase sintering and microstructure of boron-containing powder metallurgy steels
指導教授:吳明偉
指導教授(外文):Ming-Wei Wu
口試委員:張世穎、曹龍泉、張世賢、吳明偉
口試委員(外文):Shih-Ying Zhang, Lung-Chuan Tsao, Shih-Hsien Chang, Ming-Wei Wu
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:熱分析相鑑定硼化物顯微組織粉末合金鋼液相燒結
外文關鍵詞:thermal analysisphase identificationboridemicrostructurepowder metallurgy steelLiquid phase sintering
相關次數:
  • 被引用被引用:6
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粉末合金鋼已被廣泛運用在結構材料用途,為了進一步提升其綜合機械性質,液相燒結是一種可用來提升粉末合金鋼之緻密化且不會導致成本明顯增加之方式,但粉末合金鋼中所含有的合金元素都會影響液相形成機制及其顯微組織,因此各合金元素所扮演之角色需要進一步深入探討。本研究的主軸在探討鎳含量(0、1.8、4wt%)及不同添加方式(預合金粉系統與純元素粉系統)對含硼粉末合金鋼(Fe-0.5Mo-0.4B-0.5C)之液相燒結的影響。
結果顯示在液相燒結後之顯微組織皆在晶界處產生連續分佈之硼化物,經由EBSD相鑑定分析及EPMA定量成分可知在1200°C燒結後硼化物的結晶結構為M2B結構,但當燒結溫度提升到1250°C持溫一小時燒結後原先石墨粉位置中碳原子大幅度的擴散進入共晶液體中,使其結晶結構會由原先的M2B結構的硼化物轉變為M3(B,C)結構的硼碳化物。
在燒結緻密化方面,經由熱分析及密度分析可知增加鎳含量可使液體形成溫度下降,且使燒結密度獲得改善。Fe-0.5Mo-0.4B-0.5C合金鋼於1250°C持溫一小時燒結後的密度增加量為0.52 g/cm3。當以預合金方式或純元素粉方式添加4 wt%鎳於Fe-0.5Mo-0.4B-0.5C時,則在1250°C持溫一小時燒結後之密度提升量分別為0.63 g/cm3及0.65 g/cm3。藉由研究結果可發現鎳元素可有助於含硼粉末合金鋼液相燒結之進行。鎳含量增加可使液相燒結後的燒結密度獲得提升。
Powder metallurgy (PM) steels have been widely utilized in the structural material. To further increase their mechanical properties, liquid phase sintering, which does not much increase the production cost, is a feasible way to promote densification of the PM steels. However, every alloying element in the PM steel can affect the mechanism of liquid formation and its microstructure. Therefore, the role of the various alloying element should be clearly identified. The main objective of this research was to examine the influences of nickel content (0, 1.8, 4 wt%) and adding ways (elemental powder system and prealloy system) on liquid phase sintering of boron-containing PM steel (Fe-0.5Mo-0.4B-0.5C).
The result showed that the microstructure after liquid phase sintering contained continuous boride at the grain boundary. According to the electron back-scatter diffraction (EBSD) and electron probe microanalysis (EPMA) results, it can be found that the boride phase at the grain boundary is M2B structure after 1200°C sintering. Moreover, after 1250°C sintering for one hour, carbon atoms in the original graphite powder gradually diffused into the eutectic liquid and change the boride phase after sintering. The M2B structure in the steel sintered at 1200°C were replaced by an M3(B,C) borocarbide in the steel sintered at 1250°C for one hour.
The results of thermal analysis and density demonstrate that nickel can lower the temperature for liquid formation and thus increase the sintered density. The increase in the sintered density of Fe-0.5Mo-0.4B-0.5C steel after sintering at 1250°C for one hour is 0.52 g/cm3. When the 4 wt% Ni additive is added into the Fe-0.5Mo-0.4B-0.5C steel, the increases in the sintered densities after sintering at 1250°C for one hour are 0.63 g/cm3and 0.65 g/cm3, for the prealloy system and elemental powder system, respectively. These findings show that increasing the nickel content in the boron-containing PM steels is beneficial for the liquid phase sintering and sintered density.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2-1 粉末冶金之簡介 3
2-1-1 基礎粉末的選用 4
2-1-2 合金元素的選用 5
2-2 合金元素的影響 6
2-2-1 碳 6
2-2-2 鎳 7
2-2-3 鉬 10
2-2-4 鉻 12
2-3 孔隙度對粉末合金鋼之機械性質影響 15
2-2-1 緻密度 15
2-2-2 孔隙形貌 16
2-4 液相燒結原理 17
2-4-1 液相燒結驅動力 17
2-4-2 液相燒結各階段效應 18
2-5 液相燒結元素的效應 19
2-5-1 硼 19
2-5-2 磷 22
2-5-3 銅 24
2-6 燒結氣氛對液相燒結之影響 25
2-7 合金元素對含硼合金鋼的液相燒結影響 28
2-7-1 鉬 28
2-7-2 碳 30
2-7-3 鉻 34
第三章 實驗步驟 41
3-1 實驗設計 41
3-2 實驗流程 43
3-2-1 粉末特性 44
3-2-2 粉末混合與成形 49
3-2-3 燒結條件 49
3-3 燒結密度 50
3-4 顯微組織觀察 50
3-4-1 金相觀察 50
3-4-2 硼化物定量分析與合金元素分布 51
3-4-3 硼化物結構鑑定 51
3-5 熱分析 52
3-6 硬度 52
3-6-1 洛氏硬度測試 52
3-6-2 微硬度測試 52
3-7 分析儀器 53
第四章 結果與討論 54
4-1預合金粉系統之顯微組織 54
4-1-1 1150℃之顯微組織觀察 54
4-1-2 1200℃之顯微組織觀察 55
4-1-3 1250℃之顯微組織觀察 56
4-1-4 1250℃持溫一小時之顯微組織觀察 58
4-2 預合金系粉系統之硼化物形貌與合金元素分佈分析 59
4-3 預合金粉系統之燒結過程和變化 71
4-4 預合金粉系統之燒結密度 73
4-5純元素粉系統之顯微組織 75
4-5-1 1150℃之顯微組織觀察 75
4-5-2 1200℃之顯微組織觀察 75
4-5-3 1250℃之顯微組織觀察 76
4-5-4 1250℃持溫一小時之顯微組織觀察 77
4-6 純元素粉系統之硼化物形貌與合金元素分佈分析 78
4-7 純元素粉系統之燒結過程和變化 87
4-8 純元素粉系統之燒結密度 89
4-9不同溫度燒結後FMBC+xNi合金系統之緻密度比較 91
4-10 預合金粉系統之EBSD結構鑑定 98
4-10-1 1200℃之結晶結構鑑定 99
4-10-2 1250℃持溫一小時之結晶結構鑑定 102
4-11硬度值比較 106
第五章 結論 111
第六章 參考文獻 113
[1] 黃坤祥,“粉末冶金學(再版二刷)”,中華民國粉末冶金協會,2008。
[2] 朱秋龍,“粉末冶金工業的發展與應用”,粉末冶金會刊,第33卷,第4期,2008,第201-214頁。.
[3] X. Deng, G. Piotrowski, N. Chawla, and K. S. Narasimhan, “Fatigue crack growth behavior of hybrid and prealloyed sintered steels Part I. Microstructure characterization”, Materials Science and Engineering A, Vol. 491, 2008, pp. 19-27.
[4] X. Deng, G. Piotrowski, N. Chawla, and K. S. Narasimhan, “Fatigue crack growth behavior of hybrid and prealloyed sintered steels Part II. Fatigue behavior”, Materials Science and Engineering A, Vol. 491, 2008, pp. 28-38.
[5] H. Abdoos, H. Khorsand, and A. R. Shahani, “Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure”, Materials and Design, Vol. 30, 2009, pp. 1026-1031.
[6] A. Ibrahim, M. Abdallah, S. F. Mostafa, and A. A. Hegazy, “An experimental investigation on the W–Cu composites”, Materials and Design, Vol. 30, 2009, pp. 1398--1403.
[7] K. S. Narasimhan and F. J. Semel, “Sintering of Powder Premixes –A Brief Overview”, Advances in Powder Metallurgy and Particulate Materials, 2007, part. 5, pp. 1-24.
[8] MPIF Standard 35, 2009 Edition, Materials Standards for PM Structural Parts.
[9] R. K. Shiue , K. C. Lan ,and C. Chen, “Toughness and austenite stability of modified 9Cr–1Mo welds after tempering”, Materials Science and Engineering A, Vol. 287, 2000, pp. 10-16.
[10] K.Y. Luo, J.Z. Lu, Y.K. Zhang, J.Z. Zhou, L.F. Zhang, F.Z. Dai, L. Zhang, J. W. Zhonga, and C.Y. Cui,” Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel”, Materials Science and Engineering A, Vol. 528, 2011, pp. 4783-4788.
[11] E. Keehan, L. Karlsson, H. O. Andren, and H. K. D. H. Bhadeshia, “Influence of Carbon, Manganese and Nickel on Microstructure and Properties of Strong Steel Weld Metals Part Ⅲ: Increased Strength Resulting from Carbon Additions”, Science and Technology of Welding and Joining, Vol. 11, No. 1, 2006, pp. 19-24.
[12] M. Youseffi, C. S. Wright, and F. M. Jeyacheya, “Effect of Carbon Content, Sintering Temperature, Density and Cooling Rate upon Properties of Prealloyed Fe-1.5Mo Powder”, Powder Metallurgy, Vol. 43, No. 3, 2000, pp. 270-274.
[13] T. B. Massalski, J. L. Murray, L. H. Bennett, and B. H. Baker, “Binary alloy phase diagrams”, American Society for Metals, Metals Park, Ohio, Vol. 1, 1986, p. 1086.
[14] R. W. K. Honeycombe, and H. K. D. H. Bhadeshia, 蔡明欽 譯,“鋼-顯微組織與性能”,五南圖書書出版股份有限公司,2004,71-90頁。
[15] H. Zhang and R. M. German, “The Role of Nickel in Iron Powder Injection Molding,” International Journal of Powder Metallurgy, Vol. 27, No. 3, 1991, pp. 249-254.
[16] K. S. Hwang and M. Y. Shiau, “Effect of Nickel on the Sintering Behavior of Fe-Ni Compacts Made from Composite and Elemental Powders,” Metallurgical and Materials Transactions B, Vol. 27B, 1996, pp. 203-211.
[17] 吳明偉,“含鎳粉末冶金鋼的破壞與強化機制”,博士論文,台灣大學材料科學與工程學研究所,2007。
[18] M. W. Wu, K. S. Hwang, and H. S. Huang, “In-Situ Observations on the Fracture Mechanism of Diffusion Alloyed Ni-Containing PM Steels and a Proposed Method for Tensile Strength Improvement”, Metallurgical and Materials Transaction A, Vol. 38A, No. 7, 2007, pp. 1598-1607.
[19] T. B. Massalski, J. L. Murray, L. H. Bennett, and B. H. Baker, “Binary alloy phase diagrams”, American Society for Metals, Metals Park, Ohio, 1986, Vol. 1, p. 1079.
[20] G. Greetham and A. Reid, “The Development of Vacuum-Sintered Steels”, Powder Metallurgy, Vol. 12, No. 3, 1969, pp. 79-106.
[21] Sanjay S. Rathore and Vikram V. Dabhade, “Hardenability of sinter-forged Fe-2Cu-0.7C-xMo alloys.”, Journal of Alloys and Compounds, Vol. 664, 2016, pp. 133-140.
[22] E. Dudrová, M. Kabátová, R. Bidulský, and A. S. Wronski, “Industrial Processing, Microstructures and Mechanical Properties of Fe-(2-4)Mn-(0.85)Mo-0.3C Sintered Steels”, Powder Metallurgy, Vol. 47, No. 2, 2004, pp. 181-190.
[23] T. F. Stephenson, M. Korotkin, and S. Metcalfe, “Mechanical Properties of Reduced Mo Content PM Steels with Extra-Fine Ni Powder”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, Princeton, NJ, 2006, part 10, pp. 160-168.
[24] P. King, S. Patel, S. Shah, J. Falleur, and G. Wewers, “Lower Molybdenum Steels for High Performance Powder Metallurgy Applications”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, Princeton, NJ, 2006, part 7, pp. 81-94.
[25] T. B. Massalski, J. L. Murray, L. H. Bennett, and B. H. Baker, “Binary alloy phase diagrams”, American Society for Metals, Metals Park, Ohio, 1986, Vol. 1, p.822.
[26] S. Berg, “P/M Steel Suitable for Sinterhardening in Respect of Cost and Performance”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. B. Eisen and S. Kassam, MPIF, Princeton, NJ, 2001, part 5, pp. 18-25.
[27] T. Marcu, A. Molinari, G. Straffelini, and S. Berg, “Tensile Properties of Vacuum Sintered Dual Phase Steels”, International Journal of Powder Metallurgy, 2004, Vol. 40, pp. 57-64.
[28] M. Mollinari, T. Bacci, P. Campestrini, M. Pellizzari, and B. Tesi, “Plasma Nitriding of Fe-Cr-Mo Sintered Steels”, Powder Metallurgy, 1999, Vol. 42, No. 2, pp. 119-125.
[29] H. Danninger, R. Pöttshacher, S. Bradac, A. Salak, and J. Seyrkammer, “Comparison of Mn, Cr, and Mo Alloyed Sintered Steel Prepared from Elemental Powers”, Powder Metallurgy, 2005, Vol. 48, No. 1, pp. 23-32.
[30] P. King and B. Lindsley, “Performance Capabilities of High Strength Powder Metallurgy Chromium Steels with Two Different Molybdenum Contents”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, Princeton, NJ, 2006, part. 7, pp. 1-11.
[31] S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, “Effect of Cu, Cr and Ni on Mechanical properties of 0.15 wt%C TRIP-aided Cold Rolled Steels”, Scripta Materialia, 2003, Vol. 48, pp. 539-544.
[32] M. W. Wu, K. S. Hwang, and K. H. Chuang, “Improved Distribution of Nickel and Carbon in Sintered Steels Through Addition of Chromium and Molybdenum”, Powder Metallurgy, Vol. 51, No 2, 2008, pp. 160-165.
[33] H. Gisele, S. Renan, B. Cristiano, A. N. Klein, and J. D. B. Mello, “Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites”, Tribology International, 2014, Vol. 70, pp. 119-127.

[34]C. M. Sonsino and R. Ratzi, “Warm powder compaction substitutes conventionally double pressed and double sintered synchroniser hubs”, Powder Metallurgy, 2004, Vol. 47, pp. 352-357.
[35] D. Shanmugasundaram and R. Chandramouli, “Tensile and impact behaviour of sinter-forged Cr, Ni and Mo alloyed powder metallurgy steels”, Materials and Design, Vol. 30, 2009, pp. 3444-3449.
[36] Höganäs Handsbook for Machining Guidelines, Höganäs AB, Swenden, 2004.
[37] U. Engström, D. Milligan, and A. Klekovkin, “Mechanical Properties of High Performance Chromium Materials”, Advances in Powder Metallurgy and Particulate Materials, 2006, part .7, p.21.
[38] H. Danninger, D. Spoljaric, and B. Weiss, “Microstructural Features Limiting the Performance of P/M Steels”, The International Journal of Powder Metallurgy, Vol.33, No. 4, 1997, pp. 43-53.
[39] N. Chawla and X. Deng, “Microstructure and Mechanical Behavior of Porous Sintered Steels”, Materials Science and Engineering A, Vol. 390A, 2005, pp. 98-112.
[40] R. J. Bourcier, D. A. Koss, R.E. Smelser, and O. Richmond, “The Influence of Porosity on the Deformation and Fracture of Alloys”, Acta Metallurgica, Vol. 34, No. 12, 1986, pp. 2443-2453.
[41] R. M. German, Pavan Suri, and S. J. Park, “ Review: Liquid Phase Sintering”, Journal of Materials Science, J Mater Sci, 2009, Vol. 41, pp. 1-39.
[42] R. M. German, “Supersolidus Liquid Phase Sintering of Prealloyed Powders”, Metallurgical and Materials Transactions, Vol. 28A, 1997, pp. 1553-1567.
[43] R. B. Heady and J. W. Cahn, “An analysis of the capillary forces in liquid-phase sintering of spherical particles”, Metallurgical Transactions, Vol. 1, Issue 1, 1970, pp. 185-189.
[44] J. W. Cahn and R. B. Heady, “Analysis of the capillary forces in liquid-phase sintering of jagged particles”, Journal of The American Ceramic Society, Vol. 53, No. 7, 1970, pp. 406-409.
[45] K. S. Narasimhan, “Sintering of Powder Mixtures and The Growth of Ferrous Powder Metallurgy”, Materials Chemistry and Physics, Vol.67 2001,, pp. 56-65.
[46] J. Nowacki, “Polyphase Sintering and Properties of Metal Matrix Composites”, Journal of Materials Processing Technology, Vol. 175, 2006, pp. 316-323.
[47] A. Molinari, J. Kazior, and G. Straffelini,“Investigation of Liquid-Phase Sintering byImage Analysis”, Materials Characterization, Vol. 34, 1995, pp.271-276.
[48] J. A. C. Miramontes, J. D. O. B. Sánchez, F. A. Calderò , A. M. Villafaňe, and J. G. C. Nava, “Effect of Boron Additions on Sintering and Densification of a Ferritic Stainless Steel”, Journal of Materials Engineering and Performance, Vol. 19, No. 6, 2010, pp. 880-884.
[49] M. Sarasola, T. Gòmez-Acebo, and F. Castro, “Microstructural Development During Liquid Phase Sintering of Fe and Fe–Mo Alloys Containing Elemental Boron Additions”, Powder Metallurgy, Vol. 48, 2005, pp. 59-67.
[50] T. B. Massalski, J. L. Murray, L. H. Bennett, and B. H. Baker, “Binary alloy phase diagrams”, American Society for Metals, Metals Park, Ohio, 1986, Vol. 1, pp.1747 .
[51] K. TSENG, D. Y. LEE and H. L. MARCUS, “The Behavior of Temper Embrittlement in a Secondary-hardening 4.2wt%Mo-0.4wt%C-0.06wt%P Steel”, Materials Science and Engineering, Vol. 60, 1983, pp. 73-77.
[52] MPIF Standard 35, Published by Metal Powder Industries Federation,Princeton, NJ.
[53] W. A. Kaysser, W. J. Huppmann, and G. Petzow, “Analysis of dimensional changes during sintering of Fe-Cu”, Powder Metallurgy, No. 2, 1980, pp. 86-91.

[54] R. L. Lawcock and T. J. Davies, “Effect of carbon on dimensional and microstructural characteristics of Fe-Cu compacts during sintering”, Powder Metallurgy, Vol. 33, No. 2, 1990, pp.147-150.
[55] M. Momeni, C. Gierl, H. Danninger, I. U. Mohsin, and A. Arvand, “Thermoanalytical sintering studies of Fe–C admixed with ferroboron performed in different atmospheres”, Powder Metallurgy, Vol. 55, No. 1, 2012, pp. 54-64.
[56] M. Momeni, C. Gierl, H. Danninger, I. U. Mohsin, and A. Arvand, “Sintering Of Fe–C–BN Steel Compacts in Different Atmospheres Studied By Dilatometry And DTA/TG”, Powder Metallurgy, Vol. 55, No. 3, 2012, pp. 212-221.
[57] A. Molinari, T. Pieczonka, J. Kazior, S. Gialanella, and G. Straffelini, “Dilatometry Study of the Sintering Behavior of Boron-Alloyed Fe-1.5% Mo Powder”, Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp. 1497-1506.
[58] Z. Xiu, A. Salwe´n, X. Qin, F. He and X. Sun, “Sintering Behaviour of Iron–Molybdenum Steels with the Addition of Fe-B-C Master Alloy Powders”, Powder Metallurgy, Vol. 46, 2003, pp. 171-174.
[59] M. W. Wu, “The Influences of Carbon and Molybdenum on the Progress of Liquid Phase Sintering and the Microstructure of Boron-Containing Powder Metallurgy Steel”, Metallurgical and Materials Transactions A, Vol. 46A, Issue. 1, 2015, pp. 467-475.
[60] L. Lozada and F. Castro, “Controlled Densification of Boron-containing Stainless Steels”, Advances in Powder Metallurgy & Particulate Materials, MPIF, 2011, vol. 241, pp. 305-311.
[61] M. W. Wu, Y. C. Fan, H. Y. Huang, and W. Z. Cai, “Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon”, Metallurgical and Materials Transactions A , Vol. 46, Issue. 11, 2015, pp. 5285-5295.
[62] H. Ö. Gülsoy and S. Salman, “Sintering of a boron-doped injection moulded 17-4PH stanless steel”, Journal of materials science, Vol. 40, 2005, pp. 4101-4104.
[63] 林暐珣,“粉末合金鋼添加硼之燒結與機械性質研究”,碩士論文,虎尾科技大學材料科學與綠色能源工程研究所,2013。
[64] 范育棋,“含硼粉末合金鋼之液相燒結行為研究”,碩士論文,虎尾科技大學材料科學與綠色能源工程研究所,2014。
[65] A. Salak and M. Selecka, “Manganese in Powder Metallurgy Steels”, Cambridge International Science Publishing, 2012, pp. 151-154.
[66] T. B. Sercombe and G. B. Schaffer, “The sintering of an Fe–Cr–Ni–B–C powder”, Materials Science and Engineering A, Vol. 528, 2010, pp. 751-755.
[67] A. Rottgera, S. Webera, and W. Theisena, “Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applications”, Materials Science and Engineering A, Vol. 532 , 2012, pp. 511-521.
[68] M. Selecká, A. Šalak, and H. Danningerr, “The effect of boron liquid phase sintering on properties of Ni-, Mo- and Cr-alloyed structural steels”, Journal of Materials Processing Technology, Vol. 143-144, 2003, pp. 910-915.
[69] D. Uzunsoy, “Investigation of dry sliding wear properties of boron doped powder metallurgy 316L stainless steel”, Materials and Design, Vol. 31, 2010, pp. 3896-3900.
[70] Ming-Wei Wu,and Wen-Zhang Cai, “The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel”, International Conference on Engineering and Innovative Materials, Vol. 4, 2015, p.p.40-42.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔