跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏瀚
研究生(外文):Po-Han Chen
論文名稱:氫氣還原法製合金鋼粉末之燒結行為與機械性質之研究
論文名稱(外文):Sintering behavior and mechanical properties of alloy steel powder produced by hydrogen-reduced method
指導教授:吳明偉
口試委員:陳貞光殳國俊黃坤祥吳明偉
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:機械性質顯微組織噴霧造粒氫氣還原粉末冶金
外文關鍵詞:mechanical propertiesmicrostructurespray dryinghydrogen reducingpowder metallurgy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粉末合金鋼已被廣泛應用在機械、汽機車、光電等產業上等相關零組件,然而,粉末原料仰賴國外進口,導致整體發展受到限制,因此,本研究目的是發展可應用於粉末冶金之氫氣還原鐵粉,還原條件必須嚴謹控制,必須同時兼顧還原完全度與粉末壓縮性。首先以次微米級Fe2O3粉作為初始原料,以陶瓷粉末濕式製程配合噴霧造粒,獲得流動性良好且無明顯缺陷之球形造粒粉,並找出適當的還原溫度。
經氫氣還原結果顯示,當還原溫度由600˚C提升至930˚C時,造粒粉內的顆粒逐漸粗化,表面積明顯下降,直接影響到燒結緻密化效果,燒結密度由7.42 g/cm3劣化到6.86 g/cm3。在瞭解還原溫度之影響後,後續將Fe2O3-NiO-Mo-C合金造粒粉以氫氣還原,結果指出600˚C還原後之氧含量為1.18wt%,隨著還原溫度的提升氧含量得以下降,當還原溫度為650˚C~700˚C時,氧含量則可下降至0.58wt%~0.26wt%。
採用此研究之方法實際製作文獻中具有超高強度的Fe-6Ni-0.8Cr-0.8Mo-0.4C,結果在1250˚C真空燒結後其燒結密度可達到7.49 g/cm3,優於一般粉末合金鋼之燒結密度,亦接近金屬射出成形製程之燒結密度。前述合金鋼在經過200˚C回火後其硬度達42HRC,抗拉強度達1628MPa,伸長率為2.0%。
Powder metallurgy (PM) steels have been extensively used in the parts for the mechanical, automobile, and optoelectronic industries. However, raw powders of PM steels highly rely on foreign suppliers, which lead to a disadvantage in the overall development. Therefore, the objective of this study was to develop a hydrogen-reduced spray-dried iron powder for PM steels. To fabricate the spray-dried granules with solid morphology and high flowability, a sub-micron Fe2O3 powder was used as the raw powder to formulate the ceramic slurry for spray drying. The reducing parameters must be precisely controlled to optimize the combinations of reduction completeness and powder compressibility.
The results showed that increasing the hydrogen reduction temperature of spray-dried Fe2O3 granule from 600 ˚C to 930 ˚C decrease the sintered density of Fe from 7.42 g/cm3 to 6.86 g/cm3, due to the particle coarsening in the spray-dried granules and the decrement in the surface area. In the second part, the spray dried Fe2O3-NiO-Mo-C granules were produced and were hydrogen-reduced. After 600 ˚C reducing, the residual oxygen content was as high as 1.18 wt%. The oxygen content could be decreased with increasing the reducing temperature. After reducing at 650˚C and 700˚C, the oxygen content was 0.58 wt% and 0.26 wt%, respectively.

Based on the previous findings, the ultrahigh strength Fe-6Ni-0.8Cr-0.8Mo-0.4C steel fabricated by metal injection molding (MIM), reported in the literature, have been fabricated in this study. The result indicated that the sintered density of Fe-6Ni-0.8Cr-0.8Mo-0.4C steel sintered at 1250˚C in vacuum is 7.49 g/cm3. This high sintered density is superior to those of most PM steels and is close to those of MIM steels. The hardness, tensile strength, and elongation of the Fe-6Ni-0.8Cr-0.8Mo-0.4C steel in this study are 42 HRC, 1628MPa, and 2 %, respectively.
摘 要 i
Abstract ii
誌謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2.1粉末合金鋼簡介 2
2.2 鐵粉的製備 4
2.2.1 水噴霧法 4
2.2.2 氣噴霧法 4
2.2.3 羰基分解法 5
2.2.4 電解法 6
2.2.5 還原法 7
2.3 氫氣還原 8
2.3.1 鐵基粉末之氫氣還原 8
2.3.2 其他金屬粉末之氫氣還原 12
2.4 合金元素之影響 13
2.4.1 碳的效應 14
2.4.2 鎳的效應 15
2.4.3 鉬的效應 21
2.4.4 鉻的效應 24
2.5 顯微組織之影響 26
2.6 含鎳粉末合金鋼的破壞行為與機械性質 29
第三章 實驗方法與步驟 32
3-1 實驗設計 32
3.2 原始粉末 35
3.3 漿料製備 39
3.4 噴霧造粒 39
3.5 氫氣還原 40
3.6 還原造粒粉分析 41
3.6.1 XRD分析 41
3.6.2 SEM分析 41
3.6.3 表面積分析 42
3.6.4 碳/氧/氮/硫分析 42
3.6.5 雷射粒徑 42
3.7 混粉與生胚成形 43
3.8 脫脂與燒結 43
3.9 回火條件 44
3.10 燒結體性質分析 44
3.10.1 密度量測 44
3.10.2 金相觀察 44
3.10.3 合金元素分佈 45
3.10.4 拉伸試驗 45
3.10.5 硬度試驗 45
3.11 測量儀器 46
第四章 結果與討論 47
4.1 漿料與噴霧造粒粉之特性 47
4.2 還原造粒鐵粉之性質 49
4.2.1 結晶結構 49
4.2.2 粉末形貌 50
4.2.3 氧/氮含量分析 52
4.2.4 燒結密度 53
4.3還原Fe2O3-NiO-Mo-316L合金造粒粉之性質 54
4.3.1 結晶結構 55
4.3.2粉末形貌 56
4.3.3 表面積分析 58
4.3.4 碳/氧/氮/硫含量分析 58
4.4還原Fe2O3-NiO-Mo-C合金造粒粉之性質 60
4.4.1 粉末形貌 60
4.4.2 碳/氧/氮/硫含量分析 62
4.4.3 燒結密度 64
4.5 含鎳粉末合金鋼之顯微組織與機械性質 65
4.5.1 顯微組織 65
4.5.2 合金元素分佈 66
4.5.3 機械性質 69
4.5.4 破斷面觀察 70
第五章 結論 72
參考文獻 73
[1]黃坤祥,“粉末冶金學”,中華民國粉末冶金協會,第二版,2008年,pp. 265-275。
[2]朱秋龍,“粉末冶金市場、材料與技術的發展”,中國礦冶會刊,54卷,1期,2010 年,021-038頁。
[3]R. M. German,“ Powder Metallurgy Science ”, Metal Powder Industries Federation, Princeton, NJ, second edition, 1994, pp. 90-107.
[4]W. A. Spitzig, R. E. Semlser and O. Richmond, “ The evolution of damage and fracture in iron compacts with various initial porosities ”, Acta Materialia, 1988, Vol. 36, pp. 1201-1211.
[5]N. Chawla, X. Deng, “ Microstructure and Mechanical Behavior of Porous Sintered Steels ”, Materials Science and Engineering A, 2005, Vol. 390, pp. 98–112.
[6]M. W. Wu, L. C. Tsao, G. J. Shu and B. H. Lin, “The Effects of Alloying Elements and Microstructure on the Impact Toughness of Powder Metal Steels”, Materials Science and Engineering A, 2012, Vol. 538, pp. 135-144.
[7]M. W. Wu, K. S. Hwang, and H. S. Huang, “In-Situ Observations on the Fracture Mechanism of Diffusion-Alloyed Ni-Containing Powder Metal Steels and a Proposed Method for Tensile Strength Improvement”, Metallurgical and Materials Transactions A, 2007, Vol. 38, pp. 1598-1607.
[8]K. S. Hwang, C. Hsu, L. H. Cheng and P. H. Chen, “Ultrahigh-Strength Sinter-Hardening MIM Alloys Steels”, International Journal of Powder Metallurgy, 2012,Vol. 48, pp. 35-43.
[9]I. J. Mellanby, “Inco Speciality Powder Products for the 1990´s ”, Metal Powder Report,
1990, Vol. 45, No. 2, pp. 94-98.
[10]Höganäs Handsbook For Machining Guidelines, Höganäs AB, Swenden, 2004.
[11]Höganäs Handsbook For for Sintered Components, Höganäs AB, Swenden, 2015.
[12]MPIF Standard 35, 2009 Edition, Materials Standards for PM Structural Parts.
[13]L. V. Bogdandy and H. J. Engell, “ The Reduction of Iron Ores ” Springer-Verlag, Berlin, 1971.
[14]A. Pineau, N. Kanari and I Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I : Low Temperature Reduction of Hematite “ , Thermochimica Acta, 2006, Vol. 447, pp. 89-100.
[15]A. Pineau, N. Kanari and I Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part II : Low Temperature Reduction of Magnetite” , Thermochimica Acta, 2007, Vol. 456, pp. 75-88.
[16]H. Y. Lin, Y. W. Chen and C.Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen”, Thermochemica Acta, 2003, Vol. 400, pp. 61-67.
[17]G. Walther, T. Buttner, B. Kieback, T. Weißgarber, M. Hoffmann and G. Bachmann, “Properties and sintering behaviour of fine spherical iron powders produced by new hydrogen reduction process”, Powder Metallurgy , 2014, Vol. 57, No.3, pp. 176-183.
[18]D. Wagner, O. Devisme, F. Patisson, and D. Ablitzer, “A Laboratory Study of The Reduction of Iron Oxides by Hydrogen”, Sohn International Symposium, 2006, Vol. 2, pp.111-120.
[19]G. S. Kim, Y. J. Lee, D. G. Kim, and Y. D.Kim, “Consolidation Behavior of Mo Powder Fabricated from Milled Mo Oxide by Hydrogen-Reduction”, Journal of Alloys and Compounds, 2008, Vol. 454, pp. 327-330.
[20]J.Dang, G. H. Zhang, K. C. Chou, R. G. Reddy, Y. He and Y. Sun, “Kinetics and Mechanism of Hydrogen Reduction of MoO3 to MoO2”, Int. Journal of Refractory Metals and Hard Materials, 2013, Vol. 41, pp. 216-223.
[21]L. Wang, G. H. Zhang, K. C. Chou, “Mechanism and Kinetic Study of Hydrogen Reduction of Ultra-Fine Spherical MoO3 to MoO2”, Int. Journal of Refractory Metals and Hard Materials, 2016, Vol. 54, pp. 342-350.
[22]J. Dang, G. H Zhang, and K. C. Chou, “Study on Kinetics of Hydrogen Reduction of MoO2”, 2013, Vol. 41, pp. 356-362.
[23]G. Singla, K. Singh, and O.P. Pandey, “Structural and Thermal Properties of In-Situ Reduced WO3 to W Powder”, Powder Technology, 2013, Vol. 237, pp. 9-13.
[24]B. Lindsley and T. Murphy“ Effect of Post Sintering Thermal Treatments on Dimensional Precision and Mechanical Properties in Sinter-Hardening PM Steels” Advances In Powder Metallurgy And Particulate Materials, 2007, Vol. 5, pp. 76-86.
[25]G. Olschewski and G. Nitsch, “ Diffusion-Bonded Molybdenum Steel Powders for High Strength Application” Advances in Powder Metallurgy and Particulate Materials, 2002, Part 2, pp. 21-30.
[26]W. Kiatdherarat1, P. Mungsantisuk1, R.Tongsri, S. Mahathanabodee, K. Sirivedin, R. Krataitong, M. Morakotjinda, T. Yotkaew and N. Tosangthum, “Effects of Cooling Rate and Carbon Content on Mechanical Property of Sintered Fe-Cr-Mo Alloys”, Key Engineering Materials, 2015, Vol. 658, pp. 69-75.
[27]S. Saritas, R. Causton, W. B. James and A. Lawley, “Effect of Microstructural Inhomogeneities on The Fatigue Crack Growth Response of Prealloyed and Two Hybrid P/M Steels”, Advances in Powder Metallurgy and Particulate Materials, 2002, Part 5, pp. 136-152.
[28]M. W. Wu, K. S. Hwang and K. H. Chuang, “Improved Distribution of Nickel and Carbon in Sintered Steels through Addition of Chromium and Molybdenum” Powder Metallurgy, Vol. 51, No 2, pp. 160-165.
[29]M. W. Wu and K. S. Hwang,“ Formation Mechanism of Weak Ferrite Areas in Ni-Containing Powder Metal Steels and Methods of Strengthening them”, Materials Science and Engineering A, 2010, Vol. 527A, pp. 5421-5429.
[30]K. S. Hwang, C. H. Hsieh and G. J. Shu, “ Comparison of Mechanical Properties of Fe-1.75Ni-0.5Mo-1.5Cu-0.4C Steels Made from PIM and Press and Sinter Processes”, Powder Materials, 2002, Vol. 45, pp. 160-166.
[31]K. S. Hwang, C. H. Hsieh and G. J. Shu, “ Comparison of Mechanical Properties of Fe-1.75Ni-0.5Mo-1.5Cu-0.4C Steels Made from PIM and Press and Sinter Processes”, Powder Materials, 2002, Vol. 45, pp. 160-166.
[32]S.St Laurent and F. Chagnon, “ Dynamic Properites of Sintered Molybdenum Steels”, Advances in Powder Metallurgy and Particulate Materials, 2002, Part 5, pp. 121-135.
[33]Sanjay S. Rathore, M. M. Salve, V. V. Dabhade, “ Effect of Molybdenum Addition on the Mechanical Properties of Sinter-Forged FeeCueC Alloys”, Journal of Alloys and Compounds, 2015, Vol. 649, pp. 988-995.
[34]U. Engström, D. Milligan and A. Klekovkin, “ Mechanical Properties of High Performance Chromium Materials”, Advances in Powder Metallurgy and Particulate Materials, 2006, Part 7, pp. 21-32.
[35]M. W. Wu, L. C.Tsao, S. Y. Chang, “The Influences of Chromium Addition and Quenching Treatment on the Mechanical Properties and Fracture Behaviors of Diffusion-Alloyed Powder Metal Steels”, Materials Science & Engineering A, 2013,Vol. 565, pp. 196-202.
[36]D. Shanmugasundaram, R. Chandramouli, “Tensile and Impact Behaviour of Sinter-Forged Cr, Ni and Mo Alloyed Powder Metallurgy Steels”, Materials and Design, 2009, Vol. 30, pp. 3444-3449.
[37]X. Deng, G. Piotrowski, N. Chawla, K.S. Narasimhan, “Fatigue crack growth behavior of hybrid and prealloyed sintered steels Part I. Microstructure characterization”, Materials Science and Engineering A, 2008, Vol. 491, pp. 19-27.
[38]M. W. Wu, G. J. Shu, S.Y. Chang and B. H. Lin, “A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties”, Metallurgical and Materials Transactions”, 2014, Vol. 45 A, pp. 3866-3875.
[39]H. B. Lin, Z. H. Ying, L. H. zhong and Z. Q. Shan, “Study on Kinetics of Iron Oxide Reduction by Hydrogen”, Chinese Journal of Chemical Engineering, 2012, Vol. 20,pp. 10-17.
[40]W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres”, Applied Catalysis A, General, 2007, Vol. 326, pp. 17-27.
[41]F. Hanejko, H. Rutz, “A New Atomized Low Apparent Density Sponge Like Iron Powder”, European Powder Metallurgy Association, 2009, Vol. 2, pp. 163-168.
[42]W. X. Wei, L. J. Song, L. B. Zhi, X. C. Hui, P. Z. Ming, H. M. Zhong, X. Tao, W. G. Gen, Y. Z. Ming, Y. D. Qing, “Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature”, Transactions of Nonferrous Metals Society of China”, 2009, Vol. 19, pp. 785-789.
[43]B. J. Briscoe, A. U. Khan and P. F. Luckham, “Optimising the Dispersion on an Alumina Suspension using Commercial Polyvalent Electrolyte Dispersants”, Journal of the European Ceramic Society, 1998, Vol. 18, pp. 2169-2173.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊