|
[1]黃坤祥,“粉末冶金學”,中華民國粉末冶金協會,第二版,2008年,pp. 265-275。 [2]朱秋龍,“粉末冶金市場、材料與技術的發展”,中國礦冶會刊,54卷,1期,2010 年,021-038頁。 [3]R. M. German,“ Powder Metallurgy Science ”, Metal Powder Industries Federation, Princeton, NJ, second edition, 1994, pp. 90-107. [4]W. A. Spitzig, R. E. Semlser and O. Richmond, “ The evolution of damage and fracture in iron compacts with various initial porosities ”, Acta Materialia, 1988, Vol. 36, pp. 1201-1211. [5]N. Chawla, X. Deng, “ Microstructure and Mechanical Behavior of Porous Sintered Steels ”, Materials Science and Engineering A, 2005, Vol. 390, pp. 98–112. [6]M. W. Wu, L. C. Tsao, G. J. Shu and B. H. Lin, “The Effects of Alloying Elements and Microstructure on the Impact Toughness of Powder Metal Steels”, Materials Science and Engineering A, 2012, Vol. 538, pp. 135-144. [7]M. W. Wu, K. S. Hwang, and H. S. Huang, “In-Situ Observations on the Fracture Mechanism of Diffusion-Alloyed Ni-Containing Powder Metal Steels and a Proposed Method for Tensile Strength Improvement”, Metallurgical and Materials Transactions A, 2007, Vol. 38, pp. 1598-1607. [8]K. S. Hwang, C. Hsu, L. H. Cheng and P. H. Chen, “Ultrahigh-Strength Sinter-Hardening MIM Alloys Steels”, International Journal of Powder Metallurgy, 2012,Vol. 48, pp. 35-43. [9]I. J. Mellanby, “Inco Speciality Powder Products for the 1990´s ”, Metal Powder Report, 1990, Vol. 45, No. 2, pp. 94-98. [10]Höganäs Handsbook For Machining Guidelines, Höganäs AB, Swenden, 2004. [11]Höganäs Handsbook For for Sintered Components, Höganäs AB, Swenden, 2015. [12]MPIF Standard 35, 2009 Edition, Materials Standards for PM Structural Parts. [13]L. V. Bogdandy and H. J. Engell, “ The Reduction of Iron Ores ” Springer-Verlag, Berlin, 1971. [14]A. Pineau, N. Kanari and I Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I : Low Temperature Reduction of Hematite “ , Thermochimica Acta, 2006, Vol. 447, pp. 89-100. [15]A. Pineau, N. Kanari and I Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part II : Low Temperature Reduction of Magnetite” , Thermochimica Acta, 2007, Vol. 456, pp. 75-88. [16]H. Y. Lin, Y. W. Chen and C.Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen”, Thermochemica Acta, 2003, Vol. 400, pp. 61-67. [17]G. Walther, T. Buttner, B. Kieback, T. Weißgarber, M. Hoffmann and G. Bachmann, “Properties and sintering behaviour of fine spherical iron powders produced by new hydrogen reduction process”, Powder Metallurgy , 2014, Vol. 57, No.3, pp. 176-183. [18]D. Wagner, O. Devisme, F. Patisson, and D. Ablitzer, “A Laboratory Study of The Reduction of Iron Oxides by Hydrogen”, Sohn International Symposium, 2006, Vol. 2, pp.111-120. [19]G. S. Kim, Y. J. Lee, D. G. Kim, and Y. D.Kim, “Consolidation Behavior of Mo Powder Fabricated from Milled Mo Oxide by Hydrogen-Reduction”, Journal of Alloys and Compounds, 2008, Vol. 454, pp. 327-330. [20]J.Dang, G. H. Zhang, K. C. Chou, R. G. Reddy, Y. He and Y. Sun, “Kinetics and Mechanism of Hydrogen Reduction of MoO3 to MoO2”, Int. Journal of Refractory Metals and Hard Materials, 2013, Vol. 41, pp. 216-223. [21]L. Wang, G. H. Zhang, K. C. Chou, “Mechanism and Kinetic Study of Hydrogen Reduction of Ultra-Fine Spherical MoO3 to MoO2”, Int. Journal of Refractory Metals and Hard Materials, 2016, Vol. 54, pp. 342-350. [22]J. Dang, G. H Zhang, and K. C. Chou, “Study on Kinetics of Hydrogen Reduction of MoO2”, 2013, Vol. 41, pp. 356-362. [23]G. Singla, K. Singh, and O.P. Pandey, “Structural and Thermal Properties of In-Situ Reduced WO3 to W Powder”, Powder Technology, 2013, Vol. 237, pp. 9-13. [24]B. Lindsley and T. Murphy“ Effect of Post Sintering Thermal Treatments on Dimensional Precision and Mechanical Properties in Sinter-Hardening PM Steels” Advances In Powder Metallurgy And Particulate Materials, 2007, Vol. 5, pp. 76-86. [25]G. Olschewski and G. Nitsch, “ Diffusion-Bonded Molybdenum Steel Powders for High Strength Application” Advances in Powder Metallurgy and Particulate Materials, 2002, Part 2, pp. 21-30. [26]W. Kiatdherarat1, P. Mungsantisuk1, R.Tongsri, S. Mahathanabodee, K. Sirivedin, R. Krataitong, M. Morakotjinda, T. Yotkaew and N. Tosangthum, “Effects of Cooling Rate and Carbon Content on Mechanical Property of Sintered Fe-Cr-Mo Alloys”, Key Engineering Materials, 2015, Vol. 658, pp. 69-75. [27]S. Saritas, R. Causton, W. B. James and A. Lawley, “Effect of Microstructural Inhomogeneities on The Fatigue Crack Growth Response of Prealloyed and Two Hybrid P/M Steels”, Advances in Powder Metallurgy and Particulate Materials, 2002, Part 5, pp. 136-152. [28]M. W. Wu, K. S. Hwang and K. H. Chuang, “Improved Distribution of Nickel and Carbon in Sintered Steels through Addition of Chromium and Molybdenum” Powder Metallurgy, Vol. 51, No 2, pp. 160-165. [29]M. W. Wu and K. S. Hwang,“ Formation Mechanism of Weak Ferrite Areas in Ni-Containing Powder Metal Steels and Methods of Strengthening them”, Materials Science and Engineering A, 2010, Vol. 527A, pp. 5421-5429. [30]K. S. Hwang, C. H. Hsieh and G. J. Shu, “ Comparison of Mechanical Properties of Fe-1.75Ni-0.5Mo-1.5Cu-0.4C Steels Made from PIM and Press and Sinter Processes”, Powder Materials, 2002, Vol. 45, pp. 160-166. [31]K. S. Hwang, C. H. Hsieh and G. J. Shu, “ Comparison of Mechanical Properties of Fe-1.75Ni-0.5Mo-1.5Cu-0.4C Steels Made from PIM and Press and Sinter Processes”, Powder Materials, 2002, Vol. 45, pp. 160-166. [32]S.St Laurent and F. Chagnon, “ Dynamic Properites of Sintered Molybdenum Steels”, Advances in Powder Metallurgy and Particulate Materials, 2002, Part 5, pp. 121-135. [33]Sanjay S. Rathore, M. M. Salve, V. V. Dabhade, “ Effect of Molybdenum Addition on the Mechanical Properties of Sinter-Forged FeeCueC Alloys”, Journal of Alloys and Compounds, 2015, Vol. 649, pp. 988-995. [34]U. Engström, D. Milligan and A. Klekovkin, “ Mechanical Properties of High Performance Chromium Materials”, Advances in Powder Metallurgy and Particulate Materials, 2006, Part 7, pp. 21-32. [35]M. W. Wu, L. C.Tsao, S. Y. Chang, “The Influences of Chromium Addition and Quenching Treatment on the Mechanical Properties and Fracture Behaviors of Diffusion-Alloyed Powder Metal Steels”, Materials Science & Engineering A, 2013,Vol. 565, pp. 196-202. [36]D. Shanmugasundaram, R. Chandramouli, “Tensile and Impact Behaviour of Sinter-Forged Cr, Ni and Mo Alloyed Powder Metallurgy Steels”, Materials and Design, 2009, Vol. 30, pp. 3444-3449. [37]X. Deng, G. Piotrowski, N. Chawla, K.S. Narasimhan, “Fatigue crack growth behavior of hybrid and prealloyed sintered steels Part I. Microstructure characterization”, Materials Science and Engineering A, 2008, Vol. 491, pp. 19-27. [38]M. W. Wu, G. J. Shu, S.Y. Chang and B. H. Lin, “A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties”, Metallurgical and Materials Transactions”, 2014, Vol. 45 A, pp. 3866-3875. [39]H. B. Lin, Z. H. Ying, L. H. zhong and Z. Q. Shan, “Study on Kinetics of Iron Oxide Reduction by Hydrogen”, Chinese Journal of Chemical Engineering, 2012, Vol. 20,pp. 10-17. [40]W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres”, Applied Catalysis A, General, 2007, Vol. 326, pp. 17-27. [41]F. Hanejko, H. Rutz, “A New Atomized Low Apparent Density Sponge Like Iron Powder”, European Powder Metallurgy Association, 2009, Vol. 2, pp. 163-168. [42]W. X. Wei, L. J. Song, L. B. Zhi, X. C. Hui, P. Z. Ming, H. M. Zhong, X. Tao, W. G. Gen, Y. Z. Ming, Y. D. Qing, “Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature”, Transactions of Nonferrous Metals Society of China”, 2009, Vol. 19, pp. 785-789. [43]B. J. Briscoe, A. U. Khan and P. F. Luckham, “Optimising the Dispersion on an Alumina Suspension using Commercial Polyvalent Electrolyte Dispersants”, Journal of the European Ceramic Society, 1998, Vol. 18, pp. 2169-2173.
|