( 您好!臺灣時間:2022/05/21 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hung-Chuan Lai
論文名稱:Poly(HEMA-co-NMA-co-NIPAAm)/活性氧化鋁 高吸濕性能複合材料應用於低能源損耗
論文名稱(外文):Poly(HEMA-co-NMA-co-NIPAAm)/Activated alumina high hygroscopic composite material used in low energy losses
  • 被引用被引用:3
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
首先,成功利用自由基聚合(Free radical copolymerization)合成Poly(HEMA-co-NMA-co-NIPAAm)共聚高分子(其中HEMA為高吸水性材料、NMA提供化學交聯、NIPAAm為溫敏性吸水材料),接著與具有吸附性、多孔性高分散度、大比表面積的活性氧化鋁進行摻合,藉由調整實驗條件(沾附或攪拌),將高分子披覆在活性氧化鋁上。利用 (1) 不同的高分子摻和條件,(2) 不同濃度高分子溶液披覆,(3) 室溫飽和吸水時間的差異,(4) 不同溫度下的脫水效率,進一步探討此複合材料於水氣吸附、脫附的應用。
The mainly use of techniques in this research is polymer composite, the composite of adsorbent (activated alumina)/copolymers (Poly (HEMA-co-NMA-co-NIPAAm)) is possessing a capacity of highly hygroscopicity and thermo-responsive. The function is to Enhance the adsorption capacity of the adsorbent and also reduce the desorption of the energy needed to improve industrial energy efficiency.
First of all, a successfully synthesis of Poly (HEMA-co-NMA-co-NIPAAm) copolymers via free radical copolymerization (herein, HEMA is water absorbing monomer, NMA acts as a chemical crosslinker, and NIPAAm is thermo-responsive and water absorption moiety). And then, blending with activated alumina (highly dispersion porosity and large surface area). The copolymers coated on the activated alumina by the adjustments of the experimental conditions (the buildup or stirring).
Using the below conditions to do the applications of water vapor adsorption/desorption in this composite material
(1) Blending copolymer with different conditions, (2) different concentrations of copolymer solution coating, (3) difference of water saturation time at room temperature, (4) the efficiency of dehydration at different temperatures.
In conclusion, this highly hygroscopicity and thermo-responsive composite effectively enhance the moisture absorption with low moisture vapor desorption and energy required. Besides, it could be used repeatedly, therefore, this composite is quite a big potential development in the future regarding to the process of industrial and environmental water absorption field.
摘 要 i
誌 謝 v
目 錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧與理論基礎 4
2.1 除濕材料介紹 4
2.2 壓縮空氣介紹 7
2.3 吸附式乾燥機介紹 10
2.4 吸附劑介紹 12
2.4.1 活性碳介紹 13
2.4.2 矽膠介紹 15
2.4.3 沸石介紹 16
2.4.4 活性氧化鋁介紹 17
2.5 吸附原理介紹 18
2.6 吸附種類介紹 19
2.6.1 吸附劑再生方式 20
2.7 交聯劑介紹 21
2.8 高分子水膠 HEMA介紹 23
2.9 高分子水膠 NIPAAm介紹 25
第三章 實驗部分 28
3.1 實驗藥品 28
3.2 實驗儀器 29
3.3 合成Poly(HEMA-co-NMA-co-NIPAAm) 30
3.4 披覆Poly(HEMA-co-NMA-co-NIPAAm)在活性氧化鋁上 31
3.4.1 活性氧化鋁與高分子攪拌後熱交聯 31
3.4.2 活性氧化鋁與高分子沾附後熱交聯 32
3.5 室溫飽和吸附率測試(WH) 34
3.6 不同脫附溫度之吸附劑水氣脫除測試(WK) 34
3.7 Poly(HEMA-co-NMA-co-NIPAAm)的特性分析 34
3.7.1 傅立葉轉換紅外線光譜儀 (FT-IR) 34
3.7.2 熱重分析儀 (TGA) 36
3.7.3 微差掃描式熱分析儀 (DSC) 37
3.7.4 核磁共振光譜儀 (NMR) 38
3.7.5 凝膠滲透層析儀 (GPC) 40
第四章 結果與討論 42
4.1 室溫飽和吸附率測試(WH)結果 42
4.1.1 吸附時間不同的WH 42
4.1.2 高分子披覆方式不同的WH 44
4.1.3 高分子披覆濃度不同的WH 45
4.1.4 高分子摻合比例不同的WH 47
4.2 不同脫附溫度之吸附劑水氣脫除測試(WK)結果 48
4.3 傅立葉轉換紅外線光譜儀 (FT-IR)結果 52
4.4 熱重分析儀 (TGA)結果 55
4.5 微差掃描式熱分析儀 (DSC)結果 56
4.6 核磁共振光譜儀 (NMR)結果 57
第五章 結論 59
第六章 參考文獻 60
1.Maeda, M., et al., Preparation of Porous Fired Bodies From Mesoporous Powders by Selective Leaching Method and Their Humidity Conditioning Property. Journal of the Ceramic Society of Japan, 2002. 110(2): p. 121-125.
2.Tanaka, T., Collapse of Gels and the Critical Endpoint. Physical Review Letters, 1978. 40(12): p. 820.
3.Chen, K. M., 高壓系統下親/疏水性吸附劑之吸附行為與再生能耗探討. 2012.
4.王如哲 and 黃月純, 節能減碳教育: 國際觀點與案例: Energy Education: International Perspectives. 2011: 高等教育文化事業有限公司.
5.Harding, C. and Nutter, D. Compressed Air System Analysis and Retrofit for Energy Savings. 2014.
6.邱世璿 and 洪景華, 應用於二氧化碳冷媒壓縮機之多孔擠製管二次加工分析與模擬. 2007.
7.Panjaitan, L. V. P., Influence of Types and Concentrations of Surfactant for Mesoporous Bioactive Glass. 2014.
8.林怡君 and 白曛綾, 液相法製造程序對中孔洞沸石型吸附材特性及其丙酮吸附量影響之研究. 2005.
9.蔣本基, 活性碳物理化學特性對 VOCs 吸附之影響 (II). 1995.
10.張家源, et al., 結合粉狀活性碳與混凝劑處理 ABS 廢水之研究. 嘉南學報 (科技類) 29 期: p. 248-258, 2003.
11.許峰明, 粒狀活性碳及活性碳纖維對氣, 液相有機物之吸附, 脫附研究. 元智大學化學工程與材料科學學系學位論文, 1993: p. 1-0.
12.Peng, C. C., Study of Viscose Rayon Based Carbon Fiber Adsorbents Modified by Supporting Silver and Its Physical and Chemical Properties. 2010, Taipei: National Taiwan University of Science and Technology.
13.Arjasa, O. P., Smart Core-Shell Microgel for Dehumidifying Membrane: Synthesis, Characterization and Performance. 2012.
14.Reichhardt, N. V., et al., Porosity and surface properites of SBA-15 with grafted PNIPAAM: A water sorption calorimetry study. Langmuir, 2011. 27(22): p. 13838-13846.
15.Yang, R. T., Gas Separation by Adsorption Processes. 2013: Butterworth-Heinemann.
16.Ku, Y., Lee, W. H. and Wang, W. Photocatalytic Reduction of Carbon Dioxide in Gas Steams by UV/TiO~ 2 Process. JOURNAL-CHINESE INSTITUTE OF ENVIRONMENTAL ENGINEERING, 2003. 13(4): p. 243-250.
17.Chen, et al., Performance Predictions For a New Zeolite 13X/CaCl[2] Composite Adsorbent for Adsorption Cooling Systems. Vol. 55. 2012, Kidlington, ROYAUME-UNI: Elsevier. 11.
18.Lin, T. F. and Wu, J. K., Adsorption of Arsenite and Arsenate Within Activated Alumina Grains: Equilibrium and Kinetics. Water research, 2001. 35(8): p. 2049-2057.
19.Halsey, G., Physical Adsorption on Non‐Uniform Surfaces. The Journal of Chemical Physics, 1948. 16(10): p. 931-937.
20.Stenzel, M. H., Remove Organics by Activated Carbon Adsorption. Chemical Engineering Progress;(United States), 1993. 89(4).
21.Ben, Shebil, S.M., Effect of Heat of Adsorption on the Adsorptive Drying of Solvents at Equilibrium in a Packed Bed of Zeolite. Chemical Engineering Journal, 1999. 74(3): p. 197-204.
22.Fastyn, P., et al., Adsorption of Water Vapour From Humid Air by Selected Carbon Adsorbents. Journal of Chromatography A, 2005. 1078(1): p. 7-12.
23.Gregg, S. J., Sing, K. S. W. and Salzberg, H. Adsorption Surface Area and Porosity. Journal of The Electrochemical Society, 1967. 114(11): p. 279C-279C.
24.Jury, W. A., Focht, D. D. and Farmer, W. J., Evaluation of Pesticide Groundwater Pollution Potential from Standard Indices of Soil-Chemical Adsorption and Biodegradation. Journal of environmental quality, 1987. 16(4): p. 422-428.
25.Boyd, G., Adamson, A. and Myers Jr, L., The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1. Journal of the American Chemical Society, 1947. 69(11): p. 2836-2848.
26.Mezey, E. J. and S.T. DiNovo, Adsorbent Regeneration and Gas Separation Utilizing Microwave Heating. 1982, Google Patents.
27.Zou, L., et al., Removal of VOCs by Photocatalysis Process Using Adsorption Enhanced TiO 2–SiO 2 Catalyst. Chemical Engineering and Processing: Process Intensification, 2006. 45(11): p. 959-964.
28.Rainbolt, J. E., et al., Anhydrous Tertiary Alkanolamines as Hybrid Chemical and Physical CO2 Capture Reagents With Pressure-Swing Regeneration. Energy & Environmental Science, 2011. 4(2): p. 480-484.
29.Sung, H. W., et al., Crosslinking Characteristics and Mechanical Properties of a Bovine Pericardium Fixed with a Naturally Occurring Crosslinking Agent. Journal of biomedical materials research, 1999. 47(2): p. 116-126.
30.Boschetti, E., Process for Obtaining Gels of N-Methylol-Acrylamide Copolymers and Application of Said Gels for the Stepped Gradient Separation of Seric Lipoproteins. 1980, Google Patents.
31.Hoffman, A. S., Hydrogels for Biomedical Applications. Advanced drug delivery reviews, 2012. 64: p. 18-23.
32.Kettunen, M., et al., Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials, 2011. 21(3): p. 510-517.
33.Tian, B. S. and Yang, C., Temperature-Responsive Nanocomposites Based on Mesoporous SBA-15 Silica and PNIPAAm: Synthesis and Characterization. The Journal of Physical Chemistry C, 2009. 113(12): p. 4925-4931.
34.Morosanu, C., Thin Films by Chemical Vapor DepositionElsevier. New York, 1990.
35.Tauber, R. N. and Wolf, S., Silicon Processing for the VLSI Era: Process Technology. 1986: Lattice Press.
36.Zhou, Z., Zhu, S. and Zhang, D., Grafting of Thermo-Responsive Polymer Inside Mesoporous Silica With Large Pore Size Using ATRP and Investigation of Its Use in Drug Release. Journal of Materials Chemistry, 2007. 17(23): p. 2428-2433.
37.Li, J., et al., Radiation Grafting of Thermo-Sensitive Poly (NIPAAm) onto Silicone Rubber. Radiation Physics and Chemistry, 1999. 55(2): p. 173-178.
38.Lin, S. Y., Chen, K. S. and Liang, R. C., Thermal Micro ATR/FT-IR Spectroscopic System for Quantitative Study of the Molecular Structure of Poly (N-Isopropylacrylamide) in Water. Polymer, 1999. 40(10): p. 2619-2624.
39.Deshmukh, M., et al., LCST In Poly (N-Isopropylacrylamide) Copolymers: High Resolution Proton NMR Investigations. Polymer, 2000. 41(22): p. 7951-7960.
40.Lee, W. F. and Yen, S. H. Thermoreversible Hydrogels. XII. Effect of the Polymerization Conditions on the Swelling Behavior of the N‐Isopropylacrylamide Gel. Journal of applied polymer science, 2000. 78(9): p. 1604-1611.
41.Kishi, R., et al., Electrical Deformation of Thermotropic Liquid-Crystalline Polymer Gels. Molecular Crystals and Liquid Crystals, 1997. 295(1): p. 113-116.
42.Wang, R., H. Kreuzer, and Grunze, M., Molecular Conformation And Solvation of Oligo (Ethylene Glycol)-Terminated Self-Assembled Monolayers And Their Resistance to Protein Adsorption. The Journal of Physical Chemistry B, 1997. 101(47): p. 9767-9773.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top