(44.192.66.171) 您好!臺灣時間:2021/05/18 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃婷婕
研究生(外文):Ting-Jie Huang
論文名稱:聚醯亞胺/二氧化鋯無機奈米粒子高介電 混成薄膜於有機薄膜電晶體應用之研究
論文名稱(外文):Hybrid thin films of high dielectric polyimide/ zirconium dioxide inorganic nanoparticles in organic thin-film transistors
指導教授:郭霽慶
口試委員:游洋雁李文亞
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:X光吸收光譜介電常數溶膠凝膠法混成薄膜二氧化鋯聚亞醯胺
外文關鍵詞:XASsol-gel methodhybrid thin filmZirconium dioxidepolyimide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是先製備聚亞醯胺/二氧化鋯混成薄膜,先從TEM中顯示二氧化鋯粒徑約小於50nm,UV-vis的結果證明薄膜穿透性高在96-99%。混合後FTIR可以知道475cm-1與634 cm-1有二氧化鋯的結構。X 光吸收光譜(XAS)中的XANES分析三種樣品ZrO2 precursor sol、PZ sol與PZ film證明所製備樣品與標準品ZrO2 powder一樣為+4價,XANES定量分析不同合成比例下Zr含量,結果得知吸收強度隨二氧化鋯摻混比例成正比關係。Zr K吸收邊的EXAFS分析可知在經過300℃加熱薄膜上Zr的局部結構與6個O原子做鍵結,平均距離為2.12Å,而較遠端還有6個Zr原子。與溶液狀態相比較,顯示在薄膜上ZrO2有形成較大的團聚結構。從TGA使用空氣與氮氣量測熱裂解溫度得知,使用空氣Td均大於400℃,氮氣Td均大於417℃,並且900℃的殘餘量隨著二氧化鋯增加而增加。此結果與非破壞性XANES定量分析相一致。DSC結果可知Tg均大於304℃,顯示二氧化鋯與有機高分子有產生交聯結構限制鏈動,而提升玻璃轉移溫度,由以上分析可知混成材料有一定程度的耐熱性。此外,薄膜吸水性量測可知PZ12時最低,此特性可以用在低吸水性的電子產品上。在接觸角量測可以發現PZ12時油接觸角與水接觸角最大,因此表面能最低,故可降低薄膜內的結構缺陷,並提高載子遷移率,而製備出良好的有機無機混成薄膜。混成薄膜蒸鍍pentacene後用FESEM與AFM來分析,可知pentacene會隨二氧化鋯增加而顆粒變大及缺陷低,而PZ12有緻密性高結晶顆粒大。
電性質分析中,聚亞醯胺/二氧化鋯混成材料PZ0-PZ12之介電常數從4.04增加至8.10,但在PZ15下降至5.28,量測漏電流 (-2 MV cm-1)均小於10-9 Acm-2。載子遷移率從PZ0為2.78*10-1在PZ12時為4.15*10-1,但在PZ15下降至3.34*10-1,開關比Ion/Ioff在PZ0時為1.3*105在PZ12時增加至1.8*105,但在PZ15下降1.8*104,臨界電壓都趨近於零,由以上結果可以得知有機與無機材料二氧化鋯有成功混合,摻混比例為PZ12是最好的。
In this work, the organic/inorganic hybrid thin film, polyimide/ZrO2 (PZ), were prepared and its pentacene based organic thin film transistor (OTFT) were also made to investigate the correlation between the performance and the concentration of ZrO2 in dielectric layer. To study the effect of ZrO2, a series of PZn (n=0, 2, 5, 8, 10, 12, and 15; n is the weight percentage of Zr thin films) were characterized by TEM, UV-vis, FTIR, X-ray absorption spectroscopy (XAS), TGA, and DSC. UV-vis demonstrated the high transmittance about 96-99% in each film. The FTIR results indicated vibrational frequencies of ZrO2 are around 475cm-1 and 634 cm-1. Zr K-edge XANES displayed the absorption intensity is proportional to the blending ratio of ZrO2. EXAFS analysis indicated the ZrO2 formed a bigger cluster in the film than that in solution state. Based on the pyrolysis temperatures Td in TGA and the glass transition temperature Tg in DSC measurements, some cross-link interactions existed between ZrO2 and polyimide so that the Td and Tg were increased, which also indicated that the hybrid materials possessed good thermal stability. The char yields of TGA analysis are increasing with the increased of ZrO2 contents at 900℃. This is consistent with the nondestructive Zr K-edge XANES analysis. The contact angles analysis of water and diiodomethane indicated the PZ12 displayed the largest contact angles, lowest surface energy and lowest water absorbance so as to reduce the structural defects and enhance the carrier transportation, which can be applied to the water-resistant electronic products. The FESEM and AFM analysis of pentacene based OTFT indicated the particle size of pentacence will be increased as the increasing of ZrO2 concentration and reducing the surface defect of the thin film. Among PZ0-PZ12, the pentacene deposited on PZ12 displayed the largest particle size. The analysis of electric properties indicated that the dielectric constant is increased from 4.04 on PZ0 to 8.10 on PZ12, but decreased on PZ15. All the leakage current (-2 MV cm-1) is less than 10-9 Acm-2. Carrier mobility of PZ0-PZ12 is increased from 2.78*10-1 to 4.15*10-1, but decreased to 3.34* 10-1 on PZ15. The ratio of Ion/Ioff is increased from 1.3*105 on PZ0 to 1.8*105 on PZ12, but dropped to 1.8*104 at PZ15. Furthermore, all the threshold voltage is close to zero. Based on the above results, we are succeeded in the synthetic organic/inorganic hybrid thin film and the PZ12 is the best performance among the films.
中文摘要 I
ABSTRACT II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1聚亞醯胺簡介 2
1-2-1-1 亞醯胺化方法 4
1-2-2二氧化鋯的基本性質 7
1-2-3 X光吸收光譜儀(X-ray Absorption Spectroscopy:XAS) 8
1-2-4 有機無機奈米混成複合材料 11
1-2-5 溶膠-凝膠法製程 13
1-2-5-1 溶膠-凝膠法原理 13
1-2-6 旋轉塗佈 16
1-2-7介電常數(dielectric constant) 17
1-2-8有機電晶體操作原理 17
1-2-9有機薄膜電晶體的結構 19
1-2-10重要的有機電晶體參數 20
1-2-10-1載子移動率( Field-Effect Mobility) 20
1-2-10-2臨界電壓(Threshold Voltage:VT) 20
1-2-10-3次臨界擺幅 ( Subthrehold Swing:s.s.) 21
1-2-10-4漏電流(Leakage Currents) 21
1-2-10-5開關電流比(On/Off Current Ratio, Ion/off) 22
1-2-10-6接觸電阻(Contact Resistance) 22
1-2-11有機薄膜電晶體各層材料介紹 23
1-3 研究動機及目的 28
第二章 實驗 30
2-1實驗藥品 30
2-2 實驗裝置及儀器 32
2-2-1 實驗裝置 32
2-2-2 分析儀器 33
2-3 混成薄膜性質之鑑定項目 35
2-3-1顯微結構分析 35
2-3-2光學分析 35
2-3-3結構分析 35
2-3-4熱性質分析 41
2-3-5表面型貌分析 42
2-3-6電性質分析 43
2-4 實驗方法及步驟 44
2-4-1 製備聚亞醯胺/二氧化鋯混成光學薄膜 44
2-4-2聚亞醯胺/二氧化鋯高介電混成膜製備OTFT 45
2-4-3聚亞醯胺/二氧化鋯X光吸收光譜量測 46
第三章 結果與討論 52
3-1 結構分析聚亞醯胺/無機二氧化鋯混成薄膜 52
3-1-1顯微結構分析 53
3-1-2光學性質分析 54
3-1-3結構分析 55
3-1-4熱性質分析 62
3-1-5薄膜表面型態分析 66
3-1-6接觸角與吸水性 73
3-1-7電性質分析 79
3-2聚亞醯胺/二氧化鋯混成薄膜應用於元件性質 82
3-2-1主動層表面形態分析 83
3-2-2混成薄膜之OTFT元件電性質分析 89
第四章 結論 101
第五章 參考文獻 103
附錄 109
(1) Judeinstenin P., Sanchez C., Hybrid organic-inorganic materials: a land of multidisciplinarity, J. Mater. Chem. 1996, 6, 511-525.
(2) 廖建勳, 塑膠資訊, 17, 1998。
(3) 廖建勳, 塑膠資訊, 22, 1998。
(4) 林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊,1999,第13卷,第8期,第29-34頁。
(5) 廖建勛,奈米高分子材料,工業材料,1997,第125期,第109-115頁。
(6) Yokota R., Horiuchi R., Kochi M., Soma H., Mita I., J. Polym. Sci:Polym. 136 Lett. 1998, 26, 215.
(7) Bogert M. T., Renshaw R. R., 4-Amino-0-Phthalic acid and some of ITS derivatives, Am. Chem. Soc. 1908, 30, 1135-1144.
(8) Sroog C. E., Endrey A. L., Abramo S. V., Berr C. E., Edwards W. M., Olivier K. L., Aromatic polypyromellitimides from aromatic polyamic acids, Polym. Sci.、A: Polym. Chem. 1965, 3, 1373-1390.
(9) Endrey A. L., Parma, Ohio, Process for preparing by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides, U.S. patent. 1965, 3179630.
(10) 林金雀,聚醯亞胺薄膜全球市場及應用現况,化工資訊月刊,1999,第13卷,第7期,第58-62頁。
(11) Zahir S., Renner A., Process for the manufacture of crosslinked polymers which contain imide groups, U.S. patent. 1978, 4100140.
(12) Huang H. H., Willkes G. L., Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide), Polym. 1989, 30, 2001-2012
(13) Adrova N. A., Bessonov M. I., Laius L. A., Rudakov A. P., Polyimide: A new class of thermally stable polymers, Stamford, Conn., Technomic 1970.
(14) Dine-Hart R. A., Wright W. W., Preparation and fabrication of aromatic polyimides, Appl.Polym.Sci. 1967, 11, 609-627.
(15) Kim Y. J., Glass T. E., Lyle G. D., Mcgrath J. E., Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions, Macromol.1993, 26, 1344-1358.
(16) Moy T. M., Deporter C. D., Mcgrath J. E., Synthesis of soluble polyimides and functionalized imide oligomers via solution imidization of aromatic diester-diacids and aromatic diamines, Polym.1993, 34, 819-824.
(17) Cramer A. G., DOOR SADDLE OR SILL, U.S. Patent., 317630.
(18) Edison T. A., INCANDESCENT ELECTRIC LAMP, U.S. Patent., 317631.
(19) Edison T. A., INCANDESCENT ELECTRIC LAMP, U.S. Patent., 317632.
(20) Dislich H., New Routes to Multicomponent Oxide Glasses, Angew.Chem.Int.Ed.1971, 10, 363-370.
(21) Brinker C. J., Scherer G. W., Sol-Gel-Science, Boston: Academic Press, Chap 3.
(22) Aelion R., Loebel A., Eirich F., Hydrolysis of Ethyl Silicate, Am.Chem.Soc. 1950, 72, 5705-5712.
(23) Fehér F., Berthold H. J., Beiträge zur Chemie des Schwefels. XIV. Über das System Natrium-Schwefel, Zeitschrift für anorganische und allgemeine Chemie 1953, 273, 144-160.
(24) Wen J., Wilkes G.L., Chem. Mater., 8, P.1667, 1996
(25) 周賢鎧,以濺鍍法製備固態氧化物燃料電池之銅-氧化鈰-氧化鋯與鎳-氧化鈰-氧化鋯複合薄膜陽極之研究,碩士論文,國立台灣科技大學,台北市, 2008
(26) C.D. Dimitrakopoulos, P.R. L.Malenfant, 2002, ” Organic Thin Film Transistors for Large Area Electronics”, Advanc ,vol.14, no.2, pp.99-117, January.
(27) Z.Bao, J.Locklin, Organic Field-Effect Transistors, CRC Press, 2007, New York
(28) D.A.Neamen, Semiconductor Physics and Devices, McGraw-Hill, 2003, New York.
(29) 張勤佑,不同製程條件下交聯聚乙烯酚絕緣層可撓式有機薄膜電晶體之備製,碩士論文,國立雲林科技大學,雲林,2008。
(30) A. R. Murphy, J. M. J. Fréchet,P.Chang, J. Lee, V.Subramanian, Organic thin film transistors from a soluble oligothiophene derivative containing thermally removable solubilizing groups,J. Am. Chem. Soc., 2004, 126, 1596-1597.
(31) F.J. M.zu Heringdorf, M. C. Reuter, R. M. Tromp, Growth dynamics of pentacene thin films. IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA
(32) Philip M., Roger E., Stoller, Correlation of Nanoindentation and Conventional Mechanical Property Measurements, Mater.Res.Soc.2001, 649 .
(33) Pharr R. B., Oliver W. C., Brotzen F. R., Elastic Analysis of Some Punch Problems for a Layered Medium, Int. J. Solids Struct. 1987, 23, 1657-1664.
(34) 劉政良,分子動力學運用於薄膜機械性質之計量與實驗, 碩士論文,國立成功大學,台南,2004。
(35) International Standard. Metallic Materials-Instrumented Indentation
Test for Hardness and Materials Parameters. ISO 14577, 2002.
(36) Chang C. C., Chen W. C., Synthesis and optical Properties of Polyimide-Silica Hybrid Thin Films, Chem.Mater.,2002, 14, 4242-4248.
(37) Tsai C. L., Liou G. S., Highly transparent and flexiblebpolyimide/ZrO2 nanocomposite optical films with a tunablerefractive index and Abbe number, Chem. Commun., 2015,51, 13523.
(38) Yu Y. Y., Chen C. Y., Chen W. C., Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica, Polym.2003, 44, 593-601.
(39) Li H. S., Liu J. G., Rui J. M., Fan L., Yang S. Y., Synthesis and characterization of Novel Fluorinated Aromatic Polyimides Derived from 1,1-Bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and Various Aromatic Dianhydrides, Polym.sci.、A:polym.chem.2006, 44, 2665-2674.
(40) (a)蔡英文,以臨場X光吸收光譜及繞射光譜研究鋰離子電池正極材料充放電之現象,博士論文,國立臺灣科技大學,台北,2004。(b)許益瑞,Bi2Sr2(Ca1-xYx)Cu2O8+ 高溫超導之X光特性研究,碩士論文,國立臺灣大學,台北,1998。
(41) Cornelius J. C., Marand E., Hybrid inorganic-organic materials based on a 6FDA-6FpDA-DABA polyimide and silica: physical characterization studies, Polym.2002, 43, 2385-2400.
(42) Boroglu M. S., Boz I., Gurkaynak M. A., Structural characterization of silica modified polyimide membranes, Polym.ad.tech.2006, 17, 6-11.
(43) Laaziz I., Larbot A., Julbe A., Guizard C., Cot, L. Hydroplyis of mixed titanium and zirconium alkoxides by an esterification reaction , J. Solid State Chem.1992, 98, 393.

(44) Morey M. S., Stucky G. D., Schwarz S., Fröba M.,,Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica,J. Phys. Chem. B 1999, 103, 2037-2041.
(45) Lin H. B., Sun Z. Q., Zhang H. B., B. Zhao, Study on the Oxidation of Solutions of Aniline and Phenol on Ti/SnO2-Sb2O5 Electrode by UV-Vis Spectroscopy and HPLC, Spectrosc.Spec.Analy. 26, 1141-1144.
(46) Chen G., Chen X., Yue P. L., Electrochemical Behavior of Novel Ti/IrOx-Sb2O5-SnO2 Anodes, Phys.Chem.B 2002, 106, 4364-4369.
(47) Chen X., Chen G., Yue P. L., Stable Ti/IrOx-Sb2O5-SnO2 Anode for O2 Evolution with Low Ir Content, Phys.Chem.B 2001, 105, 4623–4628.
(48) Tsai C. L., Liou G. S., Highly transparent and flexible polyimide/ZrO 2
nanocomposite optical films with a tunable refractive index and Abbe number, Chem. Commun. 2015, 51, 13523-13526
(49) Fu X. A., Qutubuddin S., Preparation and Characterization of Titania Nanocoating on Monodisperse Silica Particles, Colloids Surf.A: Physicochemical and Engineering Aspects 2001, 186, 245–250.
(50) Qin J., Zhao H., Liu X., Zhang X., Gu Y., Double phase separation in preparing polyimide/silica hybrid films by sol-gel method, Polym.2007, 48, 3379-3383.
(51) Tian Y., Liu S., Ding H., Wang L., Liu B., Shi Y., Formation of deformed honeycomb-patterned films from fluorinated polyimide, Polym.2007, 48, 2338-2344.
(52) Li T. L., Hsu S. L. C., Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate, European Polym.2007, 43, 3368–3373.
(53) Yu Y. Y., Liu C. L., Chen Y. C., Chiu Y. C., Chen W. C., Tunabledielectric constant of polyimide – barium titanate nanocomposite materials as the gate dielectrics for organic thin film transistor applications, RSC Adv. 2014, 4 , 62132–62139
(54) Malic B., Arcon I., Kodre A., Kosec M., Homogeneity of Pb ( Zr , Ti ) O3 thin films by chemical solution deposition:Extended x-ray absorption fine structure spectroscopy study of zirconium local environment, J. Appl. Phys.2006,100,051612
(55) Arčon I., Malič B., Kosec M., Kodre A., Zr k-edge EXAFS study of PZT thin film formation from sols,Phys. Scr., 2005,T115, 448–449
(56) Naber R. C. G., Tanase C., Blom P. W. M., Gelinck G. H., Marsmsn A. W., Touwslager F. J., Setayesh S., De Leeuw D. M.., High-performance solution-processed polymer ferroelectric fi eld-effect transistors, Nature Materials, 2005,Vol 4,243
(57) Baeg K.J., Noh Y.Y., Sirringhaus H., Kim D.Y., Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory, Adv. Funct. Mater., 2010, 20, 224–230
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top