1.蓋國勝,微奈米顆粒複合與功能化設計,北京:清華大學出版社,2008,
第1-400頁。
2.馬振基,奈米材料科技原理與應用,新北市:全華,2012,第1-120頁。
3.川合知二,圖解奈米應用技術,新竹:工研院奈米中心,2005,第20-60頁。
4.平尾一之,最新奈米材料之現況與展望,新北市:普林斯頓國際,2005,
第12-80頁。
5.王宣勝譯,奈米科學與技術,新北市:普林斯頓國際,2008,第13-47頁。
6.廖婉茹,奈米科技與生活,台北市:五南,2006,第25-44頁。
7.劉吉平,奈米科技與技術,新北市:世茂,2003,第23-56頁。
8.D. Adner et al., Copper(II) ethylene glycol carboxylates as precursors for inkjet printing of conductive copper patterns. Thin Solid Films 565, 143-148 (2014).
9.A. Chiolerio et al., Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: quantifying plasma treatment hardness. RSC Adv. 4, 51477-51485 (2014).
10.R. Dang et al., Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics. ACS Appl Mater Interfaces 6, 622-629 (2014).
11.Y.-S. Goo et al., Ink-jet printing of Cu conductive ink on flexible substrate modified by oxygen plasma treatment. Surface and Coatings Technology 205, S369-S372 (2010).
12.L.-N. Ho, H. Nishikawa, Copper-Filled Electrically Conductive Adhesives with Enhanced Shear Strength. Journal of Materials Engineering and Performance 23, 3371-3378 (2014).
13.Q. Huang, W. Shen, Q. Xu, R. Tan, W. Song, Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Materials Chemistry and Physics 147, 550-556 (2014).
14.K. Ida et al., Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film. Thin Solid Films 520, 2789-2793 (2012).
15.Y. Kim et al., Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Current Applied Physics 12, 473-478 (2012).
16.B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, A low-cure-temperature copper nano ink for highly conductive printed electrodes. Current Applied Physics 9, e157-e160 (2009).
17.S. Li, P. Liu, Q. Wang, X. Chen, J. Xiao, Synthesis of Cu nano-particle in toluene used for conductive ink with a binder of polyurethane. Journal of Wuhan University of Technology-Mater. Sci. Ed. 28, 1246-1250 (2013).
18.W. Li, M. Chen, Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Applied Surface Science 290, 240-245 (2014).
19.X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate. Applied Surface Science 261, 554-560 (2012).
20.P. Pallavicini et al., A monolayer of a Cu2+-tetraazamacrocyclic complex on glass as the adhesive layer for silver nanoparticles grafting, in the preparation of surface-active antibacterial materials. New Journal of Chemistry 35, 1198 (2011).
21.C. Paquet et al., Photosintering and electrical performance of CuO nanoparticle inks. Organic Electronics 15, 1836-1842 (2014).
22.B. K. Park, D. Kim, S. Jeong, J. Moon, J. S. Kim, Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515, 7706-7711 (2007).
23.S.-H. Park, W.-H. Chung, H.-S. Kim, Temperature changes of copper nanoparticle ink during flash light sintering. Journal of Materials Processing Technology 214, 2730-2738 (2014).
24.D. I. Petukhov, M. N. Kirikova, A. A. Bessonov, M. J. A. Bailey, Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating. Materials Letters 132, 302-306 (2014).
25.L. Q. Pham et al., Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interface Sci 365, 103-109 (2012).
26.L. Q. Pham et al., Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction. Radiation Physics and Chemistry 80, 638-642 (2011).
27.X.-F. Tang, Z.-G. Yang, W.-J. Wang, A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 360, 99-104 (2010).
28.C. Y. Tsai et al., A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity. Nanoscale Res Lett 10, 357 (2015).
29.W. Wu, S. Yang, S. Zhang, H. Zhang, C. Jiang, Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles. J Colloid Interface Sci 427, 15-19 (2014).
30.A. Yabuki, N. Arriffin, Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films 518, 7033-7037 (2010).
31.A. Yabuki, N. Arriffin, M. Yanase, Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films 519, 6530-6533 (2011).
32.A. Yabuki, Y. Tachibana, I. W. Fathona, Synthesis of copper conductive film by low-temperature thermal decomposition of copper–aminediol complexes under an air atmosphere. Materials Chemistry and Physics 148, 299-304 (2014).
33.Z. Zhang et al., CuInS(2) nanocrystals/PEDOT:PSS composite counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 4, 6242-6246 (2012).
34.S. Sivaramakrishnan, P.-J. Chia, Y.-C. Yeo, L.-L. Chua, P. K.-H. Ho, Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature materials 6, 149-155 (2007).
35.王换荣, 华东师范大学, 纳米二氧化硅颗粒对表面活性剂溶液气液界面扩张粘弹性的影响(2008).
36.李健, 华中科技大学, 纳米铜导电油墨工艺及应用研究 (2012).
37.李路海, 莫黎昕, 冉军, 辛智青, 导电油墨及其应用技术进展. 影像科学与光化学 32, 393-401 (2014).
38.邱宇政, 利用分散粒子動力學探討界面活性劑添加兩溶劑時之相行為. 臺灣大學高分子科學與工程學研究所學位論文, 1-38 (2005).
39.黃苑茹, 奈米級陶瓷氧化物市場分析與開發策略. 成功大學資源工程學系學位論文, 1-89 (2004).
40.黃章順, 表面電荷對界面活性劑溶液中金奈米粒子穩定度的影響. 淡江大學化學學系碩士班學位論文, 1-58 (2009).41.廖美儀, 介尺度奈米金屬氧化物之合成與性質研究. 成功大學 (重複不用) 化學系專班學位論文, 1-127 (2006).
42.劉正弘, 具多分支海膽狀金奈米粒子之製備與成長機制探討. 清華大學化學系學位論文, 1-101 (2010).
43.蕭章能, 朝春光, 以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究(2007).
44.纪丽娜, 唐晓峰, 杨振国, 喷墨印制 PCB 用新型纳米银导电油墨的研发现状及趋势. 印制电路信息, 26-30 (2009)