跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林正傑
研究生(外文):Zheng-Jie,Lin
論文名稱:溶劑與燒結溫度對導電銅墨水電阻率之影響
論文名稱(外文):Effect of solvents and sintering temperature on electrical conducting of conductive copper ink
指導教授:程耀毅
指導教授(外文):Yao-Yi,Cheng
口試委員:張瑋辰戴子安
口試委員(外文):Yao-Yi,ChengYao-Yi,Cheng
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:燒結面電阻奈米銅顆粒導電墨水
外文關鍵詞:calcinationSurface resistanceCopper nano particlesConductive ink
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要是利用經過改質後的奈米銅顆粒,搭配不同化學性質的溶劑與分散劑配置成導電銅墨水,其中還會添加乙基纖維素(Ethyl cellulose,EC)改善配方的黏度,再配合刮刀塗佈以及階段性燒結步驟可得到導電銅膜。在此研究中奈米銅顆粒導入不同化學性質的溶劑的目的是為了改善銅墨水本身的分散性與降低燒結溫度。研究中使用、粒徑分析儀、黏度儀、沉降實驗分別用來測定銅墨水在不同溶劑之各溶劑使奈米銅顆粒團聚情形、不同配方之黏度及銅墨水與奈米銅顆粒於溶劑中懸浮時間;再以X光繞射分析儀(XRD)、場發型-掃描電子顯微鏡(FE-SEM) 、四點探針量測儀分別檢測銅膜是否氧化、銅膜高溫燒結情形及銅膜面電阻。
改質後的奈米銅顆粒本身為非導體,但透過調配成導電銅墨水,並經由高溫燒結後的銅膜會形成網狀導電通路,此網狀結構提供了電子轉移的通路。
In this study, the conductive copper ink was prepared by using modified copper nano-particles, mixed with various solvent of different chemical properties. With the addition of ethyl cellulose to improve the viscosity of the conductive ink. The conductive of copper ink were obtained by a doctor blade and multi-step thermal calcination process. In this study, copper nano particle were prepared using the various solvents of different chemical properties in order to improve the dispersion of copper ink and reduce the sintering temperature. Particle size, viscosity and hydrophobic properties of copper ink in different solvents were analyzed by particle size analyzer, viscometer and contact angle meter, respectively. The purpose of this study is to check the film was copper not the copper oxide. The morphology and surface resistance of copper film were analyzed by X-ray diffractometer (XRD), field emission scanning electron microscopy (SEM), four-point probe tester, respectively.
Modified nano copper particles were non-conductor, but the copper would form a network at high sintering temperature. The network structure provides electron transfer path in copper film.
摘要 i
ABSTRACT ii
致謝 iii
總目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 奈米科學之簡介 3
2.2 導電墨水之簡介 8
2.3 界面活性劑之簡介 17
2.4 印刷製程之簡介 21
第三章 實驗 24
3.1 實驗藥品 24
3.2 實驗設備 27
3.3 測試與分析儀器 29
3.4 實驗流程 40
3.5 實驗步驟 41
3.6 測試方法 42
第四章 結果與討論 44
Part-A 銅墨水分析 44
4.1 雷射粒徑分析儀 44
4.2 Physica 旋轉流變儀 48
4.3 沉降實驗 52
Part-B 燒結後銅膜分析 60
4.4 場發射式電子顯微鏡(FE-SEM) 60
4.5 X光繞射分析儀(XRD) 70
4.6 四點探針量測儀 76
第五章 結論與未來工作 83
第六章 未來方向 84
參考文獻 85
附錄 88
附錄一、松油醇與己二醇之性質比較 88
附錄二、松油醇與己二醇之黏度比較 89
附錄三、松油醇與己二醇之X光繞射分析圖 91
附錄四、松油醇與己二醇之表面型態分析 93
附錄五、松油醇與己二醇之表面電性分析 95
附錄六、不同溶劑對噴墨之影響 97
附錄七、常見溶劑之溶解度參數 98
1.蓋國勝,微奈米顆粒複合與功能化設計,北京:清華大學出版社,2008,
第1-400頁。
2.馬振基,奈米材料科技原理與應用,新北市:全華,2012,第1-120頁。
3.川合知二,圖解奈米應用技術,新竹:工研院奈米中心,2005,第20-60頁。
4.平尾一之,最新奈米材料之現況與展望,新北市:普林斯頓國際,2005,
第12-80頁。
5.王宣勝譯,奈米科學與技術,新北市:普林斯頓國際,2008,第13-47頁。
6.廖婉茹,奈米科技與生活,台北市:五南,2006,第25-44頁。
7.劉吉平,奈米科技與技術,新北市:世茂,2003,第23-56頁。
8.D. Adner et al., Copper(II) ethylene glycol carboxylates as precursors for inkjet printing of conductive copper patterns. Thin Solid Films 565, 143-148 (2014).
9.A. Chiolerio et al., Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: quantifying plasma treatment hardness. RSC Adv. 4, 51477-51485 (2014).
10.R. Dang et al., Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics. ACS Appl Mater Interfaces 6, 622-629 (2014).
11.Y.-S. Goo et al., Ink-jet printing of Cu conductive ink on flexible substrate modified by oxygen plasma treatment. Surface and Coatings Technology 205, S369-S372 (2010).
12.L.-N. Ho, H. Nishikawa, Copper-Filled Electrically Conductive Adhesives with Enhanced Shear Strength. Journal of Materials Engineering and Performance 23, 3371-3378 (2014).
13.Q. Huang, W. Shen, Q. Xu, R. Tan, W. Song, Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Materials Chemistry and Physics 147, 550-556 (2014).
14.K. Ida et al., Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film. Thin Solid Films 520, 2789-2793 (2012).
15.Y. Kim et al., Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Current Applied Physics 12, 473-478 (2012).
16.B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, A low-cure-temperature copper nano ink for highly conductive printed electrodes. Current Applied Physics 9, e157-e160 (2009).
17.S. Li, P. Liu, Q. Wang, X. Chen, J. Xiao, Synthesis of Cu nano-particle in toluene used for conductive ink with a binder of polyurethane. Journal of Wuhan University of Technology-Mater. Sci. Ed. 28, 1246-1250 (2013).
18.W. Li, M. Chen, Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Applied Surface Science 290, 240-245 (2014).
19.X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate. Applied Surface Science 261, 554-560 (2012).
20.P. Pallavicini et al., A monolayer of a Cu2+-tetraazamacrocyclic complex on glass as the adhesive layer for silver nanoparticles grafting, in the preparation of surface-active antibacterial materials. New Journal of Chemistry 35, 1198 (2011).
21.C. Paquet et al., Photosintering and electrical performance of CuO nanoparticle inks. Organic Electronics 15, 1836-1842 (2014).
22.B. K. Park, D. Kim, S. Jeong, J. Moon, J. S. Kim, Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515, 7706-7711 (2007).
23.S.-H. Park, W.-H. Chung, H.-S. Kim, Temperature changes of copper nanoparticle ink during flash light sintering. Journal of Materials Processing Technology 214, 2730-2738 (2014).
24.D. I. Petukhov, M. N. Kirikova, A. A. Bessonov, M. J. A. Bailey, Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating. Materials Letters 132, 302-306 (2014).
25.L. Q. Pham et al., Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interface Sci 365, 103-109 (2012).
26.L. Q. Pham et al., Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction. Radiation Physics and Chemistry 80, 638-642 (2011).
27.X.-F. Tang, Z.-G. Yang, W.-J. Wang, A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 360, 99-104 (2010).
28.C. Y. Tsai et al., A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity. Nanoscale Res Lett 10, 357 (2015).
29.W. Wu, S. Yang, S. Zhang, H. Zhang, C. Jiang, Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles. J Colloid Interface Sci 427, 15-19 (2014).
30.A. Yabuki, N. Arriffin, Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films 518, 7033-7037 (2010).
31.A. Yabuki, N. Arriffin, M. Yanase, Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films 519, 6530-6533 (2011).
32.A. Yabuki, Y. Tachibana, I. W. Fathona, Synthesis of copper conductive film by low-temperature thermal decomposition of copper–aminediol complexes under an air atmosphere. Materials Chemistry and Physics 148, 299-304 (2014).
33.Z. Zhang et al., CuInS(2) nanocrystals/PEDOT:PSS composite counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 4, 6242-6246 (2012).
34.S. Sivaramakrishnan, P.-J. Chia, Y.-C. Yeo, L.-L. Chua, P. K.-H. Ho, Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature materials 6, 149-155 (2007).
35.王换荣, 华东师范大学, 纳米二氧化硅颗粒对表面活性剂溶液气液界面扩张粘弹性的影响(2008).
36.李健, 华中科技大学, 纳米铜导电油墨工艺及应用研究 (2012).
37.李路海, 莫黎昕, 冉军, 辛智青, 导电油墨及其应用技术进展. 影像科学与光化学 32, 393-401 (2014).
38.邱宇政, 利用分散粒子動力學探討界面活性劑添加兩溶劑時之相行為. 臺灣大學高分子科學與工程學研究所學位論文, 1-38 (2005).
39.黃苑茹, 奈米級陶瓷氧化物市場分析與開發策略. 成功大學資源工程學系學位論文, 1-89 (2004).
40.黃章順, 表面電荷對界面活性劑溶液中金奈米粒子穩定度的影響. 淡江大學化學學系碩士班學位論文, 1-58 (2009).
41.廖美儀, 介尺度奈米金屬氧化物之合成與性質研究. 成功大學 (重複不用) 化學系專班學位論文, 1-127 (2006).
42.劉正弘, 具多分支海膽狀金奈米粒子之製備與成長機制探討. 清華大學化學系學位論文, 1-101 (2010).
43.蕭章能, 朝春光, 以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究(2007).
44.纪丽娜, 唐晓峰, 杨振国, 喷墨印制 PCB 用新型纳米银导电油墨的研发现状及趋势. 印制电路信息, 26-30 (2009)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top