(3.236.118.225) 您好!臺灣時間:2021/05/16 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:禹道威
研究生(外文):Tau-Wei, Yu
論文名稱:PAN/DMI/HEMA之合成及物性探討
論文名稱(外文):Synthesis and Characterization of PAN/DMI/HEMA Copolymer
指導教授:芮祥鵬芮祥鵬引用關係
口試委員:魏騰芳程耀毅
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:聚丙烯腈;熔融紡絲;吸濕性;親水性
外文關鍵詞:PANMelt SpinningMoistureHydrophilic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
聚丙烯腈(Polyacrylonitrile,PAN)纖維,具有蓬鬆、柔軟、耐氣候等優點,但是較不具吸濕性與親水性,且因為生產過程普遍是用溼式紡絲,有溶劑回收與成本較高的缺點。本論文目標在於以較低成本且不需要溶劑的熔融紡絲取代溼式紡絲,並添加新的共聚單體改善吸溼性與親水性,最後探討聚丙烯腈共聚物的梯形環化結構對吸濕性與親水性的影響。
本論文實驗採用二甲基衣康酸酯(Dimethyl Itaconaye,DMI)與甲基丙烯酸羥乙酯(Hydroxyethyl Methacrylate,HEMA)與丙烯腈(Acrylonitrile,AN)做共聚合。樣品成功合成後,主要分兩部分實驗:一部分為熔融紡絲,以雙螺桿擠出機將樣品抽成纖維;另一部份為成膜,有將樣品以溶劑回溶後自然風乾的成膜,以及將樣品直接加熱至熔融後以熱壓機成膜等,個別探討其吸濕性及親水性。
檢測方面,核磁共振光譜儀(1H-NMR)確認分子的結構與樣品共聚合後的出料比;平板式流變儀(Physica)能測得樣品的儲存模數與損耗模數,確認樣品的熔融性質;熱示差掃描卡量計(DSC)測定樣品的熱性質;掃描式電子顯微鏡(SEM)能夠觀察纖維及薄膜的表面與橫切面;傅立葉轉換紅外線光譜儀(FT-IR)能夠測得樣品特殊官能基的吸收峰值,確認樣品的結構;接觸角分析儀(Contact angle)能夠測得薄膜表面的吸濕性。
Polyacrylonitrile(PAN) fiber has adventage such as fluffy, soft and weather-resistance property. However, it is poor at hygroscopic and hydrophilic property. Because the general manufacturing process of PAN fiber is wet-spinning, it has shortcomings like solvent-recycle problems and high manufacturing cost. In this study, we want to use melt-spinning method, which is low-cost and non-solvent, to replace wet-spinning. We also add new comonomer to enhance hygroscopic and hydrophilic property, and then analyze the influence of the PAN copolymer’s cyclization structure.
In this study, we use Dimethyl Itaconaye(DMI) and Hydroxyethyl Methacrylate(HEMA) to copolymerize with acrylonitrile(AN). After the synthesis succeed, we have two parts of experiments:one is melt-spinning. We use twin-screw to produce melt-spun fiber. The other is membrane-producing, and we have two kind of membranes to prepare. First, we dissolve the sample into the solvent, and let the sample become air-dried. Second, we heat the sample with welder directly until the sample become melting membrane. Then we test their hygroscopic and hydrophilic property.

All samples are characterized by Nuclear Magnetic Resonacce (1H-NMR), Rheometer (Physica), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Contact Angle Apparatus for determining the structure, storage and loss modulus, molecular weight, thermal property, surface and section scanning, chemical group adsorption and the contact angle between the sample and water drop.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 x
表目錄 xiv
圖目錄 xv
公式目錄 xix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 原理與文獻回顧 3
2.1 聚丙烯腈 3
2.1.1 聚丙烯腈之結構及特性 3
2.1.2高分子常見之聚合方法 5
2.2 自由基聚合法 6
2.2.1 起始反應 8
2.2.2 鏈延長反應 9
2.2.3 終止反應 10
2.3 聚丙烯腈均聚物與共聚物 11
2.3.1 共聚單體 12
2.4 常見的紡絲方式 14
2.4.1 溶液紡絲 14
2.4.2 熔融紡絲 15
2.4.3 靜電紡絲 16
2.5 聚丙烯腈纖維之穩定化過程 17
2.5.1 脫氫反應 17
2.5.2 環化反應 18
2.5.3 氧化反應 20
2.6 纖維的吸濕性與親水性 21
2.6.1 吸濕性的基本定義 21
2.6.2 接觸角 22
2.7 甲基丙烯酸羥乙酯之介紹 23
第三章 實驗 24
3.1 實驗藥品及材料 24
3.2 實驗設備及檢測儀器 29
3.2.1 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectrometer;NMR) 30
3.2.2 平板式流變儀 (Physica) 31
3.2.3 熱示差掃描卡量計 (Differential Scanning Calorimetry;DSC) 32
3.2.4 熱重損失分析儀 (Thermogravimetric Analysis;TGA) 33
3.2.5 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer;FTIR) 34
3.2.6 掃描式電子顯微鏡 (Scanning Electron Microscope;SEM) 36
3.2.7 熔融紡絲設備(Melt Spinning Equipments) 37
3.2.8接觸角分析儀 (Contact Angle) 40
3.2.9恆溫恆濕箱(Environmental Chamber) 41
3.2.10動態機械分析儀(Dynamic Mechanical Analyzer;DMA) 42
3.3 實驗方式 43
3.3.1 丙烯腈(Acrylonitrile)藥品蒸餾前處理 43
3.3.2 溶液聚合 44
3.3.3熔融紡絲 50
3.3.4 樣品薄膜的製備 51
3.3.5 纖維與薄膜的吸濕性測試 52
3.4 實驗流程 53
第四章 結果與討論 55
4.1 核磁共振儀光譜分析(NMR) 55
4.1.1 PAN之核磁共振儀分析(1H-NMR) 56
4.1.2 P(AN-co-DMI)之核磁共振儀分析(1H-NMR) 57
4.1.3 P(AN-co-DMI-graft-HEMA)共聚物之核磁共振儀分析(1H-NMR) 60
4.2流變性質探討 63
4.2.1 P(AN-co-DMI)之流變性質探討 64
4.2.2 P(AN-co-DMI)-graft-HEMA之流變性質探討 66
4.3熱示差掃描分析(DSC) 70
4.3.1 PAN之恆溫環化曲線 71
4.3.2 P(AN-co-DMI)之恆溫環化曲線 72
4.3.3 P(AN-co-DMI)-graft-HEMA之恆溫環化曲線 73
4.4熱重損失分析(TGA) 76
4.5傅立葉轉換紅外線光譜分析(FT-IR) 77
4.6掃描式電子顯微鏡(SEM) 82
4.7接觸角分析(Contact Angle) 85
4.8吸濕性分析(Environmental Chamber) 90
4.9動態機械分析(Dynamic Mechanical Test) 92
第五章 結論 94
第六章 參考文獻 95
[1] 賀福,碳纖維及石墨纖維,北京:化學工業出版社,2010,第67頁。
[2]H. H. Chae, B. Kim, S. H. Lee, and K. S. Yang, “Preparation of Carbon Fiber from Melt Spinnable PAN Co-polymer,” vol. 57, no. 2, 2013, pp. 289–294.
[3]S. P. Rwei, T. F. Way, and Y. S. Hsu, “Kinetics of cyclization reaction in poly(acrylonitrile/methyl acrylate/dimethyl itaconate) copolymer determined by a thermal analysis,” Polym. Degrad. Stab., vol. 98, no. 10, 2013, pp. 2072–2080.
[4]P. Rangarajan, J. Yang, V. Bhanu, D. Godshall, J. McGrath, G. Wilkes, and D. Baird, “Effect of comonomers on melt processability of polyacrylonitrile,” J. Appl. Polym. Sci., vol. 85, no. 1, 2002, pp. 69–83.
[5] XUEFEN WANG, XUMING CHEN, KYUNGHWAN YOON, DUFEI FANG,
BENJAMIN S. HSIAO, AND BENJAMIN CHU, “High Flux Filtration
Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite
Coating,” Environ. Sci. Technol. vol.39, 2005, pp.7684-7691.

[6] N.A.M. Nazri , W.J. Lau , A.F. Ismail, T. Matsuura, D. Veerasamy, N. Hilal,
“Performance of PAN-based membranes with graft copolymers bearing
hydrophilic PVA and PAN segments in direct ultrafiltration of natural rubber
effluent” Desalination, vol. 358 ,2015, pp.49–60.

[7] 邢聲遠,吳宏仁,紡織纖維,北京:化學工業出版社,2005,第306頁。

[8] A. K. Mohanty, M. Misra, G. Hinrichsen, “Biofibres, biodegradable polymers
and biocomposites: An overview” Macromol. Mater. Eng,vol. 276/277,
March. 2000, pp.1–24

[9] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, “A review of heat treatment on
polyacrylonitrile fiber,” Polymer Degradation and Stability,vol. 92, 2007,
pp.1421-1432.

[10] Mimi Tao, Fu Liu, and Lixin Xue, “Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation” J. Mater. Chem., vol. 22, March. 2012, pp. 9131–9137
[11] 薛敬和譯,高分子化學實驗法,台北:高立圖書有限公司,1981,第170
頁。

[12] 洪耀釧,孫逸民,莊尊仁,王惠民,王豐益譯,有機化學,台北:學銘
圖書有限公司,2009,第426-429頁。

[13] Z. Fu, Y. Gui, C. Cao, B. Liu, C. Zhou, and H. Zhang, “Structure evolution and
mechanism of polyacrylonitrile and related copolymers during the
stabilization,” J. Mater. Sci., vol. 49, no. 7, Jan. 2014, pp. 2864–2874.

[14] Z. Bashir, “A Critical Review of the Stabilization,” Carbon N. Y., vol. 29, no. 8,
1990, pp. 1081–1090.
[15] E. Fkzer and D. J. Miller, “The Influence of Oxygen on The Chemical Reactions During Stabilization of PAN as Carbon Fiber Precursor,” Carbon N. Y., vol. 13, no. 4, 1975, pp. 63–69.
[16] N. Grassie and R. Mcguchan, “Pyrolysis of Polyacrylonitrile and Related Polymers--III,” Eur. Polym. J., vol. 7, 1971, pp. 1357–1371.
[17] Hai Bang Lee, Mu Shik Jhon, Joseph D. Andrade, “Nature of water in synthetic hydrogels. I. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate,” Journal of Colloid and Interface Science, vol. 51, Issue 2, May 1975, pp. 225-231

[18] Wei Pan, Sheng Lin Yang, Guang Li, Jian Ming Jiang, “Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites” J.Eurpolymj., vol. 41, June. 2005, pp. 2127–2133

[19] S. P. Maradur, C. H. Kim, S. Y. Kim, B. H. Kim, W. C. Kim, and K. S. Yang, “Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile,” Synth. Met., vol. 162, no. 5–6, Apr. 2012, pp. 453–459.

[20] P. Rangarajan, J. Yang, V. Bhanu, D. Godshall, J. McGrath, G. Wilkes, and D. Baird, “Effect of comonomers on melt processability of polyacrylonitrile,” J. Appl. Polym. Sci., vol. 85, no. 1, 2002, pp. 69–83.

[21] A. Ju, S. Guang, and H. Xu, “Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers,” Carbon N. Y., vol. 54, Apr. 2013, pp. 323–335.

[22] Yincai Tian, Keqing Han, Wenhui Zhang, Jingjie Zhang, Rui Zhang,Shuping Liu and Muhuo Yu, “Influence of melt temperature on structure of polyacrylonitrile in Ionic Liquids during Plasticized melt spinning process,” Applied Mechanics and Materials, vols. 268-270 (2013) pp 483-486.

[23] Sanjeev P. Maradur, Chang Hyo Kim, So Yeun Kim, Bo-Hye Kim, Woo Chul Kim, Kap Seung Yang,” Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile,” Synthetic Metals, vols. 162 (2012) 453– 459.

[24] Yan-zhi Wang, Shu-gui Wang, Jia-lin Liu, “Polyacrylonitrile Based Carbon Fibers Obtained from a Melt Spun Route,” Key Engineering Materials, vols .75-576 (2014), pp. 151-155.

[25] Alina V. Korobeinyk, Raymond L.D. Whitby, Sergey V. Mikhalovsky, “High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith,” European Polymer Journal, vols. 48 (2012), pp. 97–104.

[26] K.Parashuram, S.K.Maurya, H.H.Rana, P.S.Singh, P.Ray, A.V.R.Reddy, “Tailoring the molecular weight cut off values of polyacrylonitrile based hollow fibre ultrafiltration membranes with improved fouling resistance by chemical modification,” Journal of Membrane Science, vol. 425-426 (2013) pp. 251–261.

[27] Parvin Karimi Neghlani, Mehdi Rafizadeh, Faramarz Afshar Taromi, “Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers,” Journal of Hazardous Materials, vol. 186 (2011), pp. 182–189.

[28] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, “A review of heat treatment on polyacrylonitrile fiber,” Polymer Degradation and Stability, vol. 92 (2007) pp. 1421-1432.

[29] Guishan Hong, Xiong Li, Lingdi Shen, Min Wang, Ce Wang, Xufeng Yu, Xuefen Wang, “High recovery of lead ions from aminated polyacrylonitrile
nanofibrous affinity membranes with micro/nano structure,” Journal of Hazardous Materials, vol. 295 (2015), pp. 161–169.

[30] Zbigniew Czech, “New copolymerizable photoinitiators for radiation curing of acrylic PSA”, International Journal of Adhesion & Adhesives , vol. 27 (2007) , pp.195–199.

[31] N.A.M.Nazri, W.J.Lau, A.F.Ismail, T.Matsuura, D.Veerasamy, N.Hilal, “Performance of PAN-based membranes with graft copolymers bearing hydrophilic PVA and PAN segments in direct ultrafiltration of natural rubber effluent,” Desalination, vol. 358 (2015), pp. 49–60.

[32] Anasuya Sahoo, K.R.T. Ramasubramani, Manjeet Jassal , Ashwini K. Agrawal, “Effect of copolymer architecture on the response of pH sensitive fibers based on acrylonitrile and acrylic acid,” European Polymer Journal, vol. 43 (2007), pp. 1065–1076.

[33] Zhang Wangxi, Liu Jie, Wu Gang, “Evolution of structure and properties of PAN precursors during their conversion to carbon fibers,” Carbon, vol. 41 (2003), pp. 2805–2812.

[34] Shahid Majeed, Daniel Fierro, Kristian Buhr, Jan Wind, Bing Du, Adriana Boschetti-de-Fierro, Volker Abetz,” Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes,” Journal of Membrane Science, vol.403– 404 (2012), pp.101– 109.

[35] Shao-Hua Wu, Xiao-Hong Qin, “Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method,” Materials Letters, vol.106(2013), pp.204–207.

[36] Hyunuk Kim, Young-Ju Lee, Dong-Chul Lee, Gu-Gon Park, Yoonjong Yoo, “Fabrication of the carbon paper by wet-laying of ozone-treated carbon fibers with hydrophilic functional groups,” Carbon, vol.60(2013), pp.429-436.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文