跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范振彥
研究生(外文):Chen-Yen Fan
論文名稱:製備與鑑定醚型聚胺酯/二元醇改質奈米碳 管複合材料
論文名稱(外文):Preparation and Characterization of Ether-typed Polyurethane /Diol-modified Carbon Nanotube Composites
指導教授:王賢達王賢達引用關係
指導教授(外文):Hsin-Ta Wang
口試委員:黃豪銘楊正昌
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:聚胺酯、奈米碳管、複合材料
外文關鍵詞:PolyurethaneCarbon NanotubeComposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將市售奈米碳管(MWCNT)鍛燒、酸處理(20%HF、22%HNO3)及氧化(H2SO4及HNO3)後得到含羧酸官能基之奈米碳管(ACNT),再將其與亞硫醯氯(SOCl2)及乙二醇、丁二醇或己二醇反應得到乙二醇化奈米碳管(EDCNT)、丁二醇化奈米碳管(BDCNT) 及己二醇化奈米碳管(HDCNT)。將三種不同的醇化奈米碳管以不同比例,分別加入由聚氧四甲基二醇(PTMO, M.W.:1000)及二苯甲烷二異氰酸鹽(MDI)所合成的聚胺酯預聚物,再以丁二醇作為鏈延長劑,得到醚型聚胺酯/改質奈米碳管複合材料(PU/EDCNT、PU/BDCNT或PU/HDCNT)。
奈米碳管的部分,FTIR光譜顯示了不同階段改質奈米碳管的特徵峰。粒徑分析顯示,HDCNT最大,ACNT最小。以Boehm’s method分析改質奈米碳管之官能基數量,其結果與TGA做理論分析之數值相近。
複合材料的部分,FTIR光譜顯示了添加改質碳管破壞PU的氫鍵鍵結。TGA、DSC顯示,當添加越高比例之EDCNT,PU/EDCNT之Td¬及Tg隨之上升。添加5%EDCNT後,PU/EDCNT較PU的表面電阻下降5個級數,顯示複合材料導電性更佳。PU/EDCNT之靜態接觸角隨著EDCNT添加量增加而上升,顯示奈米碳管使複合材料更具疏水性。拉伸測試顯示添加5%EDCNT後,PU/EDCNT較PU的抗拉強度提升2倍,楊氏模數提升兩倍,而斷裂延伸率下降58%。
In this research, multi-walled carbon nanotube (MWCNT) were purified by annealing and hydrofluoric acid treatment, then oxidized by acid treatment in order to introduce carboxylic group onto the surface. The oxidized MWCNTs (ACNT) were reacted subsequently with thionylchloride and three kind of diol (ethanediol, 1, 4-butanediol and1,
6-hxanediol) to obtain ethanediol-modified (EDCNT), 1, 4-butanediol-modified (BDCNT) and 1, 6-hxanediol-modified carbon nanotube (HDCNT). Polyurethane (PU) nanocomposites were prepared by polytetramethylene oxide (PTMO, M.W.:1000), 4, 4’-methylenediphenyl
diisocyanate (MDI) and 1, 4-butanediol (chain extender) through two-step and in situ methods with EDCNT, BDCNT and HDCNT.
FTIR and Boehm’s method identified the functional groups of three different kinds of modified carbon nanotubes. The diol-modified carbon nanotubes were also characterized by particle size analyzer and solubility tests. The hydrogen bonding index (HBI) obtain from FTIR for PU composites decreases with increasing EDCNT content in the material indicating the destruction of hydrogen bonding in the hard section. However, the HBI increases for composites (PUB5 or PUH5) with BDCNT or HDCNT suggestion that the hard segments of the polymer chains were more aggregate.
The increases of temperature of degradation (Td1 or Td2), glass transition temperature, static contact angle’s, tensile strength’s and Young’s moduli for the composites with increase the content of EDCNT were obtained, but the decreases were observed in tensile elongations at break and surface resistivities for the materials.
By introducing the longer linkers between carbon nanotubes and hard segments of the polymer chains, the composites (PUB5 and PUH5) gave higher Td2’s, tensile strength’s, Young’s moduli, tensile elongation’s at break and static contact angle’s due to the agglomeration of the hard segments of the polymer chain’s, but the Tg’s of the soft segments of the polymer chains of the above materials decreased.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3研究方法 2
第二章 文獻回顧 3
2.1聚胺酯 3
2.1.1聚胺酯之基本結構與性質 3
2.1.2聚胺酯之合成與應用 4
2.2奈米碳管 6
2.2.1奈米碳管之結構與種類 6
2.2.2奈米碳管之純化及改質 7
2.3聚胺酯/奈米碳管複合材料 8
第三章 實驗 12
3.1藥品及實驗器材 12
3.2實驗儀器及檢測方法 16
3.2.1傅立葉轉換紅外線光譜儀(Fourier Transform Infra Red Spectrometer, FT-IR) 16
3.2.2核磁共振儀(Nuclear Magnetic Resonance Spectroscopy, NMR) 16
3.2.3粒徑分析儀(Particle Size Analyzer) 17
3.2.4熱重量損失分析儀(Thermogravimetric Analyzer, TGA) 17
3.2.5示差掃描熱分析儀(Differential Scanning Calorimeter, DSC) 18
3.2.6萬能材料試驗機(Material Testing System) 18
3.2.7穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 19
3.2.8四點探針電阻測量儀(Four Points Probe Sheet Resistivity Measurement) 19
3.2.9凝膠滲透層析儀(Gel Permeation Chromatograph, GPC) 20
3.2.10接觸角測量儀(Contact-Angle Meter) 20
3.2.11反滴定法(Boehm titration method) 21
3.3實驗步驟 22
3.3.1奈米碳管純化 23
3.3.2奈米碳管酸化 23
3.3.3奈米碳管醯氯化 23
3.3.4奈米碳管二元醇化 24
3.3.5聚胺酯之合成 24
3.3.6聚胺酯/改質奈米碳管之製備 24
第四章 結果與討論 26
4.1改質奈米碳管 26
4.1.1 FTIR分析 26
4.1.2粒徑分析 28
4.1.3 Boehm官能基分析 29
4.1.4熱重量分析 30
4.1.5溶劑性分析 31
4.2聚胺酯及其改質奈米碳管複合材料 32
4.2.1 核磁共振光譜分析 32
4.2.2 GPC分析 33
4.2.3 FTIR分析 33
4.2.4熱重量分析 37
4.2.5 DSC分析 40
4.2.6接觸角分析 42
4.2.7 表面電阻分析 44
4.2.8 拉伸測試分析 46
4.2.9 TEM分析 51
第五章 結論 56
參考文獻 59
附錄A 改質奈米碳管之粒徑大小 65
附錄B 改質奈米碳管之FTIR 68
附錄C 改質奈米碳管之溶解性 71
附錄D 改質奈米碳管之TGA 74
附錄E 改質奈米碳管之TGA理論計算 77
附錄F PU之GPC 79
附錄G 聚胺酯/改質奈米碳管複合材料之FTIR 81
附錄H 聚胺酯/改質奈米碳管複合材料之TGA 86
附錄I 聚胺酯/改質奈米碳管複合材料之TGA微分 91
附錄J 聚胺酯/改質奈米碳管複合材料之DSC 96
附錄K 聚胺酯/改質奈米碳管複合材料之接觸角 101
附錄L 聚胺酯/改質奈米碳管複合材料之表面電阻 106
附錄M 聚胺酯/改質奈米碳管複合材料之拉伸測試 108
[1] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 1991, pp. 56-58.

[2] X. S. Wang, Q. Q. Li, J. Xie, Z. Jin, J. Y. Wang, Y. Li, K. Jiang and S. S. Fan, "Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates," Nano Letters, vol. 9, no. 9, 2009, pp. 3137-3141.

[3] M. Popov, M. Kyotani, R. J. Nemanich and Y. Koga, "Superhard phase composed of single-wall carbon nanotubes," Physical Review B, vol. 65, no. 033408, 2002, pp. 334081-334084.

[4] E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, "Thermal conductance of an individual single-wall carbon nanotube above room temperature," Nano Letters, vol. 6, no. 1, 2006, pp. 96-100.

[5] S. H. Hong and S. Myung, "A flexible approach to mobility," Nature Nanotechnology, vol. 2, 2007, pp. 207-208.

[6] E. T. Thostenson, C. Y. Li and T. W. Chou, "Nanocomposites in context," Composites Science and Technology, vol. 65, 2005, pp. 491-516.

[7] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R. O. Ritchie, "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes," Materials Science and Engineering A, vol. 334, 2002, pp. 173-178.

[8] P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite," Science, vol. 265, 1994, pp. 1212-1214.

[9] T. J. Webster , M. C. Waid, J. L. McKenzie, R. L. Price and J. U. Ejiofor, "Nano-biotechnology:Carbon nanofibres as improved neural and orthopaedic implants," Nanotechnology, vol.15, 2004, pp. 48-54.

[10] C. A. Dyke and J. M. Tour, "Covalent functionalization of single-walled carbon nanotubes for materials applications," Journal of Physical Chemistry A, vol. 108, no. 51, 2004, pp.11151-11159.

[11] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, "Chemistry of Single-Walled Carbon Nanotubes," Accounts of Chemical Research, vol. 35, no. 12, 2002, pp.1105-1113.

[12] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, "Fullerene Pipes," Science, vol. 280, 1998, pp. 1253-1156.

[13] K. Bagdi, K. Molnár, I. Sajó and B. Pukánszky, "Specific interactions, structure and properties in segmented polyurethane elastomers," eXPRESS Polymer Letters, vol. 5, no. 5, 2011, pp.417-427.

[14] C. Prisacariu, E. Scortanu and B. Agapie, "The effect of hard sequence ordering on the mechanical behavior of polyurethane elastomers," International Journal of Polymer Analysis and Characterization, vol. 17, 2012, pp. 312-320.

[15] J. W. G. Wildoer, L. C. Venemai, A. G. Rinzler, R. E. Smalley and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes," Nature, vol. 391, 1998, pp. 59-62.

[16] S. Iijima, "Pentagons heptagons and negative curvature in graphite microtubule growth," Nature, vol. 356, 1992, pp. 776-780.

[17] O. Zhou, R. M. Fleming and D. W. Murphy, "Defects in carbon nanostructure," Nature, vol. 263, 1994, pp. 1744-1747.

[18] H. J. Wang, A. Zhou, F. Peng, H. Yu and J. Yang, "Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II)," Journal of Colloid and Interface Science, vol. 316, 2007, pp. 277-283.

[19] J. Deng, X. Q. Zhang, K. Wang, H. Zou, Q. Zhang and Q. Fu, "Synthesis and properties of poly(ether urethane) membranes filled with isophorone diisocyanate-grafted carbon nanotubes," Journal of Membrane Science, vol. 288, 2007, pp. 261-267.

[20] M. Xu, T. Zhang, B. Gu, J. Wu and Q. Chen, "Synthesis and properties of novel polyurethane - urea/multiwalled carbon nanotube composites," Macromolecules, vol. 39, 2006, pp. 3540-3545.

[21] R. N. Jana and J. W. Cho, "Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubes," Journal of Applied Polymer Science, vol. 108, 2008, pp. 2857-2864.

[22] M. A. Fonseca, B. Abreu, F. A. M. M. Gonçalves, A. G. M. Ferreira, R. A. S. Moreira and M. S. A. Oliveira, "Shape memory polyurethanes reinforced with carbon nanotubes," Composite Structures, vol. 99, 2013, pp.105-111.

[23] J. Y. Kwon and H. D. Kim, "Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization," Journal of Polymer Science: Part A: Polymer Chemistry, vol. 43, 2005, pp. 3973-3985.

[24] Q. Li, L. Guo, T. Qiu, W. Xiao, D. Du and X. Li, "Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films," Applied Surface Science, vol. 377, 2016, pp. 66-74.

[25] Z. Wang, M. D. Shirley, S. T. Meikle, R. L. D. Whitby and S. V. Mikhalovsky, "The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions," Carbon, vol. 47, 2009, pp. 73-79.

[26] Y. Wang, J. W. and F. Wei, "Treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio," Carbon, vol. 41, 2003, pp. 2939-2948.

[27] C. Gao, C. D. Vo, Y. Z. Jin, W. Li and S. P. Armes, "Multihydroxy polymer-functionalized carbon nanotubes:synthesis, derivatization, and metal loading," Macromolecules, vol. 38, 2005, pp. 8634-8648.

[28] M.A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis and R. C. Haddon, "Ester-functionalized soluble single-walled carbon nanotubes," Applied Physics A, vol. 74, 2002, pp. 333-338.

[29] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus and M. S. Dresselhaus, "Size effects in carbon nanotubes," Physical Review Letters, vol. 81, no.9, 1998, pp. 1869-1872.

[30] R. H. Baughman, A. A. Zakhidov and W. A. de Heer, "Nanotubes--the route toward applications," Science, vol. 297, 2002, pp. 787-792.

[31] Z. S. Petrovic and J. Ferguson, "Polyurethane elastomers," Progress in Polymer Science, vol. 26, 1991, pp. 695-836.

[32] P. Slobodian, P. Riha, R. Benlikaya, P. Svoboda and D. Petras, "A flexible multifunctional sensor based on carbon nanotube/polyurethane composite," IEEE Sensors Journal, vol. 13, no.10, 2013, pp. 4045-4048.

[33] R. Sattar, A. Kausar and M. Siddiq, "Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review," Journal of Plastic Film & Sheeting, vol. 31, 2014, pp. 186-224.

[34] T. L. Wang and C. G. Tseng, "Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane," Journal of Applied Polymer Science, vol. 105, 2007, pp. 1642-1650.

[35] Y. C. Jung, N. G. Sahoo and J. W. Cho, "Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers," Macromolecule Rapid Communication, vol. 27, 2006, pp. 126-131.

[36] A. K. Barick and D. K. Tripathy, "Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites," Materials Science and Engineering B, vol. 176, 2011, pp. 1435-1447.

[37] D. Wang, H. Li, M. Li, H. Jiang, M. Xia and Z. Zhou, "Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes," Journal of Materials Chemistry C, vol. 1, 2013, pp. 2744-2749.

[38] H. Kong, C. Gao and D. Yan, "Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization," Journal of the American Chemical Society, vol. 126, 2004, pp. 412-413.

[39] G. Wen, J. Diao, S. Wu, W. Yang, Robert Schlögl and D. S. Su, "Acid properties of nanocarbons and their application in oxidative dehydrogenation," ACS Catalysis, vol. 5, 2015, pp. 3600-3608.

[40] M. Herreraa, G. Matuscheka and A. Kettrupa, "Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI," Polymer Degradation and Stability, vol. 78, 2002, pp. 323-331.

[41] P. Kro´l, "Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers," Progress in Materials Science, vol. 52, 2007, pp. 915-1015.

[42] D. K. Chattopadhyay and D. C. Webster, "Thermal stability and flame retardancy of polyurethanes," Progress in Materials Science, vol. 34, 2009, pp. 1068-1133.

[43] C. Li and T. W. Chou, "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces", Composites Science and Technology, vol. 63, 2003, pp. 1517-1524.

[44] M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund and R. C. Haddon, "Dissolution of Single-Walled Carbon Nanotubes," Advanced Materials, vol. 11, 1999, pp. 834-840.

[45] H. P. Boehm, "Surface oxides on carbon and their analysis: a critical assessment," Carbon, vol. 40, 2002, pp. 145-149.

[46]P. J. Peruzzo, P. S. Anbinder, F. M. Pardini, O. R. Pardini, T. S. Plivelic, J. I. Amalvy, "On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties," Materials Today Communications, vol. 6, pp. 81-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊